Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T08:49:40.525Z Has data issue: false hasContentIssue false

Longitudinal Characterization and Transmission Dynamics of Antibiotic-Resistant Organisms in an ICU (LOCATE AROs)

Published online by Cambridge University Press:  02 November 2020

Kimberley Sukhum
Affiliation:
Washington University School of Medicine
Candice Cass
Affiliation:
Washington University School of Medicine
Meghan Wallace
Affiliation:
Washington University School of Medicine
Caitlin Johnson
Affiliation:
Washington University School of Medicine
Steven Sax
Affiliation:
Washington University School of Medicine
Carey-Ann Burnham
Affiliation:
Washington University School of Medicine
Gautam Dantas
Affiliation:
Washington University School of Medicine
Jennie H. Kwon
Affiliation:
Washington University School of Medicine
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Background: Healthcare-associated infections caused by antibiotic-resistant organisms (AROs) are a major cause of significant morbidity and mortality. To create and optimize infection prevention strategies, it is crucial to delineate the role of the environment and clinical infections. Methods: Over a 14-month period, we collected environmental samples, patient feces, and patient bloodstream infection (BSI) isolates in a newly built bone marrow transplant (BMT) intensive care unit (ICU). Samples were collected from 13 high-touch areas in the patient room and 4 communal areas. Samples were collected from the old BMT ICU, in the new BMT ICU before patients moved in, and for 1 year after patients moved in. Selective microbiologic culture was used to isolate AROs, and whole-genome sequencing (WGS) was used to determine clonality. Antibiotic susceptibility testing was performed using Kirby-Bauer disk diffusion assays. Using linear mixed modeling, we compared ARO recovery across time and sample area. Results: AROs were collected and cultured from environmental samples, patient feces, and BSI isolates (Fig. 1a). AROs were found both before and after a patient entered the ICU (Fig. 1b). Sink drains had significantly more AROs recovered per sample than any other surface area (P < .001) (Fig. 1c). The most common ARO isolates were Pseudomonas aeruginosa and Stenotrophomonas maltophila (Fig. 1d). The new BMT ICU had fewer AROs recovered per sample than the old BMT ICU (P < .001) and no increase in AROs recovered over the first year of opening (P > .05). Furthermore, there was no difference before versus after patients moved into the hospital (P > .05). Antibiotic susceptibility testing reveal that P. aeruginosa isolates recovered from the old ICU were resistant to more antibiotics than isolates recovered from the new ICU (Fig. 2a). ANI and clonal analyses of P. aeruginosa revealed a large cluster of clonal isolates (34 of 76) (Fig. 2b). This clonal group included isolates found before patients moved into the BMT ICU and patient blood isolates. Furthermore, this clonal group was initially found in only 1 room in the BMT ICU, and over 26 weeks, it was found in sink drains in all 6 rooms sampled (Fig. 2b). Conclusions: AROs are present before patients move into a new BMT ICU, and sink drains act as a reservoir for AROs over time. Furthermore, sink-drain P. aeruginosa isolates are clonally related to isolates found in patient BSIs. Overall, these results provide insight into ARO transmission dynamics in the hospital environment.

Funding: Research reported in this publication was supported by the Washington University Institute of Clinical and Translational Sciences grant UL1TR002345 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.

Disclosures: None

Type
Oral Presentations
Copyright
© 2020 by The Society for Healthcare Epidemiology of America. All rights reserved.