Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T14:01:10.334Z Has data issue: false hasContentIssue false

Modeling the Diverse FUV Spectra of Disk-Dominated Cataclysmic Variables

Published online by Cambridge University Press:  22 February 2018

Knox S. Long
Affiliation:
Space Telescope Science Institute, Baltimore, MDUSA
Christian Knigge
Affiliation:
U. of Southampton, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The FUSE and HST spectra of dwarf novae in outburst, and of nova-like variables exhibit a wide range of characteristics. In a few systems, there are obvious signatures of a fast wind in the form of P-Cygni-like profiles of OVI and other relatively high ionization state ions. But this is rare. More common are systems with FUV spectra, showing a complex mixture of high and low ionization state lines. Here we describe attempts to reproduce the spectra using a Monte Carlo radiative transfer code developed to model bi-conical winds in disk systems.

Resumen

Resumen

Los espectros de FUSE y HST de novas enanas en explosiones y de variables semejantes a novas presentan un amplio rango de características. En unos cuantos sistemas existen señales obvias de un viento rápido en la forma de los perliles de OVI semejantes a P-Cygni y de otros iones en relativamente altos estados de ionización. Pero estos casos son raros. Son más comunes los sistemas con espectros FUV que presentan una compleja mezcla de lineas de alto y bajo estado de ionización. Se describen intentos para reproducir los espectros utilizando en código dc Monte Carlo de 11 transferencia radiativa, desarrollado para modelar vientos bicónicos en sistemas de disco.

Type
The Contributed Papers
Copyright
Copyright © Instituto de astronomia/revista mexicana de astronomίa y astrofίsica 2004

References

Cordova, F. A. & Mason, K. O. 1982, ApJ, 260, 716 Google Scholar
Froning, C. S., Long, K. S., Drew, J. E., Knigge, С. & Proga, D. 2001, ApJ, 562, 963 Google Scholar
Greenstein, J. L. & Oke, J. B. 1982, Ap.J, 258, 209 Google Scholar
Hartley, L. E., Drew, J. E., Long, K. S., Knigge, С. & Proga, D. 2002, MNRAS, 332, 127 CrossRefGoogle Scholar
Heap, S. R. et al. 1978, Nature, 275, 385 Google Scholar
Knigge, C., Woods, J. A., & Drew, E. 1995. MNRAS. 273, 225 Google Scholar
Knigge, С. & Drew, J. E. 1997, ApJ. 486, 445 Google Scholar
Long, K. S. & Knigge, C. 2002, ApJ, 579, 725 Google Scholar
Mason, K. O., Drew, J. E., Cordova, F. A., Horne, K., Hilditch, R., Knigge, C., Lanz, T., & Meylan, T. 1995. MNRAS, 274, 271 Google Scholar
Shlosman, I. & Vitello, P. 1993, ApJ, 409, 372 CrossRefGoogle Scholar
Shlosman, I., Vitello, P.. & Mauche, С. W 1996, ApJ. 461, 377 CrossRefGoogle Scholar