Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T05:18:02.620Z Has data issue: false hasContentIssue false

On the consequences of mass loss from intermediate mass stars1

Published online by Cambridge University Press:  12 April 2016

Icko Iben Jr.*
Affiliation:
University of Illinois at Champaign–Urbana

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are two major effects of mass loss from stars of intermediate mass. First, the ultimate fate of such stars--whether they become supernovae of the type that leave no condensed remnant or whether they become white dwarfs--is extremely sensitive to the rate at which they lose mass during the last portion of their nuclear-burning lives. Second, the contribution of intermediate-mass stars to the enrichment of the interstellar medium in helium, carbon, nitrogen, s-process isotopes, and possibly also in iron-peak elements and r-process isotopes is similarly sensitive to mass-loss rates during this last, quiet phase of nuclear burning.

Type
Session VII - Mass Loss and Stellar Evolution: Intermediate Mass Stars
Copyright
Copyright © Reidel 1981

Footnotes

1

Supported in part by the United States National Science Foundation, grant AST 78-20124.

References

Arnett, W.D. 1969, Ap. Space Sci. 5, p. 180.Google Scholar
Arnett, W.D., Truran, J.W., and Woosley, S.E. 1971, Ap. J. 165, p. 87.Google Scholar
Becker, S.A., Jr.Iben, I., and Tuggle, R.S. 1977, Ap. J. 218, p. 633.Google Scholar
Blanco, B.M., Blanco, V.M., and McCarthy, M.F. 1978, Nature 271, p. 638.CrossRefGoogle Scholar
Blanco, V.M., McCarthy, M.F., and Blanco, B.M. 1980, Ap. J., in press.Google Scholar
Bruenn, S.W. 1972, Ap. J. Suppl., No. 207 24, p. 283.Google Scholar
Chandrasekhar, S. 1931, Ap. J. 74, p. 81.Google Scholar
Clayton, D.D., Fowler, W.A., Hull, T.C., and Zimmerman, B.A. 1961, Ann. of Phys. 12, p. 121.CrossRefGoogle Scholar
Cosner, K., Jr.Iben, I., and Truran, J.W. 1980, Ap. J. Letters 238, L91.Google Scholar
Cox, A. 1980, Ann. Rev. Ast. and Ap. 18, p. 15.Google Scholar
Frogel, J.A., Perrson, S.E., and Cohen, J.G. 1980, Ap. J., in press.Google Scholar
Fusi-Pecci, F. and Renzini, A. 1976, Astron. and Ap. 46, p. 447.Google Scholar
Jr.Iben, I. 1975a, Ap. J. 196, p. 525.Google Scholar
1975b, Ap. J. 196, p. 549.Google Scholar
Jr.Iben, I. 1980a, Ap. J., in press.Google Scholar
1981, “Proceedings of Erice Workshop on Red Giants”, ed. Jr.Iben, I. and Renzini, A. (Reidel, Dordrecht), p. 3.Google Scholar
Jr.Iben, I. and Truran, J.W. 1978, Ap. J. 220, p. 980.Google Scholar
Jr.Iben, I. and Tuggle, R.S. 1975, Ap. J. 197, p. 39.Google Scholar
Nomoto, K., Sugimoto, D., and Neo, S. 1976, Ap. Space Sci. 39, L37.Google Scholar
Paczynski, B. 1970, Acta. Astron. 20, p. 47; p. 287.Google Scholar
Paczynski, B. 1971, Acta. Astron. 21:2, p. 271, p. 417.Google Scholar
Reimers, D. 1975, Mem. Soc. Roy. Sci. Liege, 6 Ser. 8, p. 369.Google Scholar
Renzini, A. and Voli, M. 1980, AP J., in press.Google Scholar
Richer, H.B. 1980, Ap. J., in press.Google Scholar
Schwarzschild, M. and Harm, R. 1965, Ap. J. 142, p. 855.CrossRefGoogle Scholar
Truran, J.W. and Jr.Iben, I. 1977, Ap. J. 216, p. 797.Google Scholar
Ulrich, R.K. 1973, in “Explosive Nucleosynthesis”, ed. Schramm, D.N. and Arnett, W.D. (Austin), p. 139.Google Scholar
Uus, U. 1970, Nauk Informatsii 17, p. 32.Google Scholar
Weigert, A. 1966, Z.f. Ap. 64, p. 395.Google Scholar
Willson, L.A. 1980a, “Proceedings of Workshop on Physical Processes in Red Giants”, ed. Jr.Iben, I. and Renzini, A., in preparation. 1981, this volume.Google Scholar
Wood, P.R. 1981, Proceedings of Workshop on “Physical Processes in Red Giants”, ed. Jr.Iben, I. and Renzini, A., Reidel, Dordrecht, p.205.Google Scholar
Wood, P.R. and Cahn, J.H. 1977, Ap. J. 211, p. 499.Google Scholar
Wood, P.R. and Zarro, D.M. 1980, Ap. J., in press.Google Scholar