Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T19:11:47.728Z Has data issue: false hasContentIssue false

Pattern Speeds in Barred Galaxies

Published online by Cambridge University Press:  12 April 2016

B. Elmegreen*
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ratio R of the corotation radius to the bar radius ranges from 1 to 1.8 in theoretical models that fit the observed dynamics of gas or stars in the bar and spiral regions of galaxies. Most models cluster around a ratio R = 1.2 for early type galaxies. This ratio confirms the bar-aligned orbit theory long held by Contopoulos and others, which requires that R < 1, but it also suggests that bars do not end exactly at corotation, as is often assumed, but significantly inside. The difference between R = 1 in the old interpretation and R = 1.2 or 1.4 in the fitted models is critical for our interpretation of bar-spiral morphologies. It appears that the bar-to-spiral transition in early Hubble types occurs between the inner 4:1 resonance and corotation, in the range corresponding to R = 1.55 to 1 for a flat rotation curve, because of orbit stochasticity where the 2m: 1 orbits in the x1 family cluster together in space. Corotation then occurs relatively far out in the arms, at an angle from the bar end that may exceed 60° for tightly wrapped spirals. This position sometimes corresponds to the crossing of a dust lane from inside the arms to outside (NGC 1300, NGC 1365) or to a spiral arm bifurcation as in non-barred galaxies. The relatively high value of R is also consistent with the identification of inner rings with the inner 4:1 resonance, outer rings with the outer Lindblad resonance, and offset bar dust lanes and nuclear rings with the inner Lindblad resonance. In contrast to this clear interpretation for early type galaxies, there is little consensus on the location of corotation in late type galaxies, which usually lack an inner Lindblad resonance interior to the bar. It is also not known whether late type spirals corotate with their bars, although this appears to be the case for early type galaxies based on the ubiquity and location of outer spirals and rings.

Type
Part IV. Observations of Barred Galaxies: Stellar Kinematics, Bulges, AGN
Copyright
Copyright © Astronomical Society of the Pacific 1996

References

Athanassoula, E. 1992, MNRAS, 259, 345 CrossRefGoogle Scholar
Athanassoula, E., Bosma, A., Creze, M., & Schwarz, M.P. 1982, A&A, 107, 101 Google Scholar
Athanassoula, E. & Sellwood, J.A. 1986, MNRAS, 221, 213 CrossRefGoogle Scholar
Ball, R. 1992, ApJ, 395, 418 Google Scholar
Buta, R. 1986a, ApJS, 61, 609 Google Scholar
Buta, R. 1986b, ApJS, 61, 631 Google Scholar
Buta, R. 1995, ApJS, 96, 39 Google Scholar
Buta, R. & Crocker, D.A. 1991, AJ, 102, 1715 Google Scholar
Buta, R. & Crocker, D.A. 1993, AJ, 105, 1344 Google Scholar
Byrd, G., Rautiainen, P., Salo, H., Buta, R., & Crocker, D.A. 1994, AJ, 108, 476 Google Scholar
Combes, F. & Gerin, M. 1985, A&A, 150, 85 Google Scholar
Combes, F. & Elmegreen, B.G. 1993, A&A, 271, 391 Google Scholar
Contopoulos, G. 1980, A&A, 81, 198 Google Scholar
de Vaucouleurs, G. & Buta, R. 1980, ApJS, 44, 451 Google Scholar
Devereux, N.A., Kenney, J.D.P., & Young, J.S. 1992, ApJ, 103, 784 Google Scholar
Elmegreen, B.G. & Elmegreen, D.M. 1985, ApJ, 288, 438 Google Scholar
Elmegreen, B.G., Elmegreen, D.M., & Montenegro, L. 1992, ApJS, 79, 37 Google Scholar
England, M. 1989, ApJ, 344, 669 Google Scholar
England, M.N., Gottesman, S.T., & Hunter, J.H. Jr., 1990, ApJ, 348, 456 CrossRefGoogle Scholar
Garcia-Burillo, S., Combes, F., & Gerin, M. 1993, A&A, 274, 148 Google Scholar
Garcia-Burillo, S., Sempere, M.J., & Combes, F. 1994, A&A, 287, 419 Google Scholar
Hunter, J.H., Ball, R., Huntley, J.M., England, M.N., & Gottesman, S.T. 1988, ApJ, 324, 721 CrossRefGoogle Scholar
Hunter, J.H. Jr., 1990, in Galactic Models, Buchler, J.R., Gottesman, S.T., & Hunter, J.H., Ann. N.Y.Acad. Sci., 596, 174 Google Scholar
Kenney, J.D.P. & Lord, S.D. 1991, ApJ, 381, 118 Google Scholar
Kenney, J.D.P., Carlstrom, J.E., & Young, J.S. 1993, ApJ, 418, 687 CrossRefGoogle Scholar
Kent, S.M. 1987, AJ, 93, 1062 CrossRefGoogle Scholar
Kent, S.M. 1990, AJ, 100, 377 CrossRefGoogle Scholar
Kent, S.M. & Glaudell, G. 1989, AJ, 98, 1588 CrossRefGoogle Scholar
Kormendy, J. 1979, ApJ, 227, 714 Google Scholar
Lynden-Bell, D. 1979, MNRAS, 187, 101 CrossRefGoogle Scholar
Merrifield, M.R. & Kuijken, K. 1995, MNRAS, 274, 933 Google Scholar
Moore, E. & Gottesman, S.T. 1995, ApJ, in pressGoogle Scholar
Pasha, I.I. & Polyachenko, V.L. 1994, MNRAS, 266, 92 Google Scholar
Petrou, M. & Papayannopoulos, T. 1986, MNRAS, 219, 157 CrossRefGoogle Scholar
Quillen, A.C., Frogel, J.A., & Gonzalez, R.A. 1994, ApJ, 437, 162 CrossRefGoogle Scholar
Sanders, R.H. & Huntley, J.M. 1976, ApJ, 209, 53 Google Scholar
Sanders, R.H. & Tubbs, A.D. 1980, ApJ, 235, 803 Google Scholar
Schwarz, M.P. 1981, ApJ, 247, 77 Google Scholar
Schwarz, M.P. 1984, MNRAS, 209, 93 Google Scholar
Schwarz, M.P. 1985, MNRAS, 212, 677 Google Scholar
Sellwood, J.A. & Wilkinson, A. 1993, Rep. Prog. Phys., 56, 173 CrossRefGoogle Scholar
Sellwood, J.A. & Sparke, L.S. 1988, MNRAS, 231, 25PGoogle Scholar
Sempere, M.J., Garcia-Burillo, S., Combes, F., & Knapen, J.H. 1995a, A&A, 296, 45 Google Scholar
Sempere, M.J., Combes, F., & Casoli, F. 1995b, A&A, in pressGoogle Scholar
Tagger, M., Sygnet, J.F., Athanassoula, E., & Pellat, R. 1987, ApJ, 318, L43 Google Scholar
Teuben, P.J., Sanders, R.H., Atherton, P.D., & van Albada, G.D. 1986, MNRAS, 221, 1 CrossRefGoogle Scholar
TremaIne, S. & Weinberg, M.D. 1984, ApJ, 282, L5 Google Scholar
van Driel, W. & van Woerden, H. 1994, A&A, 286, 395 Google Scholar
Westpfahl, D. 1995, ApJS, in pressGoogle Scholar
Wiklind, T., Henkel, C., & Sage, L.J. 1993, A&A, 271, 71 Google Scholar