No CrossRef data available.
Article contents
X-ray Absorption by Ionized Gas in EXOSAT Spectra from the Binary System 4U1700-37/HD153919
Published online by Cambridge University Press: 12 April 2016
Abstract
We observed the 3.41 day eclipsing, massive binary system 4U1700-37/HD153919 with EXOSAT for more than one complete binary period to investigate the spectral variations during the orbital cycle of the neutron star. The spectra show a low energy excess below ~ 3 keV when modelled by a powerlaw spectrum attenuated by photoelectric absorption by neutral gas, suggesting partial ionization of the absorbing gas. The column density derived from spectra above 3 keV shows an asymmetric distribution around orbital phase 0.5 with higher absorption before eclipse ingress. We approximated the with distance to the X-ray source gradually decreasing ionization of the wind by two zones. One of higher ionized wind around the X-ray source for which X-ray opacities of a gas in photoionization equilibrium were used and a zone of neutral gas further away from the X-ray source. We find that our spectra below 3 keV can be well fitted by a powerlaw which is attenuated first by photoelectric absorption of ionized gas and then by neutral gas. Since around phase 0.5 the major contribution of the wind column density along the line of sight arises from the ionized part we found that the total column density can be higher up to a factor of about 4 taking ionization into account.
- Type
- 5. Compact Binaries
- Information
- Copyright
- Copyright © Cambridge University Press 1990