Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T14:13:39.623Z Has data issue: false hasContentIssue false

New model of Mars surface irradiation for the climate simulation chamber ‘Artificial Mars’

Published online by Cambridge University Press:  26 March 2013

M.V. Tarasashvili
Affiliation:
Iv. Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, 0218, Tbilisi, Georgia e-mail: tsu.astrobiology@yahoo.com
Sh.A. Sabashvili
Affiliation:
Iv. Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, 0218, Tbilisi, Georgia e-mail: tsu.astrobiology@yahoo.com
S.L. Tsereteli
Affiliation:
Iv. Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, 0218, Tbilisi, Georgia e-mail: tsu.astrobiology@yahoo.com
N.G. Aleksidze
Affiliation:
Iv. Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, 0218, Tbilisi, Georgia e-mail: tsu.astrobiology@yahoo.com

Abstract

A new model of the Mars surface irradiation has been developed for the imitation of radiation–temperature parameters within Mars Climate Simulation Chamber (MCSC). In order to determine the values of annual and diurnal variations of the irradiance on the Martian surface, the Solar illumination E has been expressed by the distance r between the Sun and Mars and the Sun's altitude z in the Martian sky, along with its midday zenith distance zmin. The arrangements of spring and autumn equinoxes as well as summer and winter solstice points in the Martian sky are discussed regarding the perihelion of Mars. Annual orbital points and variability of Solar zmin for different planetary latitudes have been calculated for the 15 selected values of Mars's true anomaly, along with the illumination E for 12 hourly moments of Martian daytime on the Martian equator. These original calculations and the data which have been obtained are used for the construction of technical tools imitating variations of the surface irradiation and temperature within MCSC, programming of the supporting computer and the electric scheme, which provide proper remote control and set the environmental parameters that are analogues to the 24 hours 39 minutes circadian cycle on planet Mars. Spectral distribution as monochromatic irradiance, humidity control, atmospheric composition and other environmental parameters of planet Mars are also imitated and remotely controlled within MCSC, however, are not discussed in this particular article.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O. & Schorghofer, N. (2006). Subsurface ice on Mars with rough topography. J. Geophys. Res. 111, E11007.Google Scholar
Bayraktar, H., Fields, A.P., Kralj, J.M., Spudich, J.L., Rothschild, K.J. & Cohen, A.E. (2012). Ultrasensitive measurements of microbial Rhodopsin photocycles using photochromic FRET. Photochem. Photobiol. 88, 9097.Google Scholar
Berry, B.J., Jenkins, D.G. & Schuerger, A.C. (2010). Inhibition of Escherichia coli and Serratia liquefaciens under high-salt, low-pressure, and low-temperature environments that approach surface conditions on Mars. Appl. Environ. Microbiol. 76(8), 23772386.Google Scholar
Calvin, M. & Gazenco, G. (1975). Foundation of Space Biology and Medicine. Vol. 1 – Space as a Habitat, pp. 304311.Google Scholar
Catling, D.C., Cockell, C.S. & McKay, C.P. (1999). Ultraviolet Radiation on the Surface of Mars. http://mars.jpl.nasa.gov/mgs/sci/fifthconf99/6128.pdfGoogle Scholar
Chizhevsky, A. (1976). The Terrestrial Echo of Solar Storms, pp. 367, Misl, Moscow.Google Scholar
Cloutis, E.A., Craig, M.A., Mustard, J.F., Kruzelecky, R.V., Jamroz, W.R., Scott, A., Bish, D.L., Poulet, F., Bibring, J.-P. & King, P.L. (2007). Stability of hydrated minerals on Mars. Geophys. Res. Lett. 34, L20202.Google Scholar
Dartnell, L.R., Patel, M., Storrie, L., Michael, C., Ward, J.M. & Muller, J.P. (2012). Experimental determination of photostability and fluorescence-based detection of PAHs on the Martian surface. Meteorit. Planet. Sci. 47(5), 806819.Google Scholar
Dartnell, R.L., Desorgher, L., Ward, J.M. & Coates, A.J. (2007). Martian sub-surface ionizing radiation: biosignatures and geology. Biogeosciences 4, 545558.Google Scholar
Davis, I. & Fulton, J.D. (1959). The reactions of terrestrial microorganisms to simulated Martian conditions. In Proc. X Internat. Astron. Congr, vol. 2, p. 778. Wien, Springer-Verlag, London.Google Scholar
De Angelis, G., Wilson, J.W. et al. (2006). Modelling of the Martian Environment for Radiation analysis. Radiation Measurements 41, 10971102.Google Scholar
De Angelis, G. et al. (2007). Modeling of the Martian environment for radiation analysis. Nucl. Phys. B 166, 184202.CrossRefGoogle Scholar
Duffy, M., Lewis, S., Mason, N. & Patel, M. (2012). Laboratory simulation of Martian atmospheric chemistry. In EPSC – European Planetary Science Congress Abstracts, pp. 2328, Madrid, Spain. http://meetingorganizer.copernicus.org/EPSC2012/EPSC2012-494-1.pdfGoogle Scholar
Galletta, G. et al. (2006). S.A.M., the Italian Martian simulation chamber. Orig. Life Evol. Biosph. 36(5–6), 625627.Google Scholar
Gómez, F., Mateo-Martí, E., Prieto-Ballesteros, O., Martín-Gago, J. & Amils, R. (2010). Protection of chemolithoautotrophic bacteria exposed to simulated mars environmental conditions. Icarus 209(2), 482.Google Scholar
Grossman, A.R. (2003). A molecular understanding of complementary chromatic adaptation. Photosynth. Res. 76, 207215.Google Scholar
Heselich, A., Frohns, F., Frohns, A., Naumann, S.C. & Layer, P.G. (2012). Near-infrared exposure changes cellular responses to ionizing radiation. Photochem. Photobiol. 88, 135146.Google Scholar
Jensen, L.L., Merrison, J., Hansen, A.A., Mikkelsen, K.A., Kristoffersen, T., Nornberg, P., Lomstein, B.A. & Finster, K. (2008). A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH). Astrobiology 8(3), 537548.Google Scholar
Kehoe, D.M. (2010). Chromatic adaptation and the evolution of light color sensing in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 107(20), 90299030. doi:10.1073/pnas.1004510107. http://www.pnas.org/content/107/20/9029.full.pdf+html.Google Scholar
Kumar Sharma, V. (2003). Adaptive significance of circadian clocks. Chronobiol. Int. 20(6), 901919.CrossRefGoogle Scholar
Levine, J.S., Garvin, J.B. & Head, J.W. III. (2010). Martian geology investigations. Planning for the scientific exploration of Mars by Humans. Part 2. J. Cosmol. 12, 36363646.Google Scholar
Marinova, M.M., Aharonson, O. & Asphaug, E. (2011). Geophysical consequences of planetary-scale impacts into a Mars-like planet. Icarus 211, 960985.Google Scholar
McClung, C.R. (2006). Plant circadian rhythms. Plant Cell 18(4), 792803.Google Scholar
Patricia Gonc, A. et al. (2009). MARSREM – The Mars energetic radiation environment models. In Proceedings of the 31st ICRC, ŁÓDŹ; http://icrc2009.uni.lodz.pl/proc/pdf/icrc1285.pdfGoogle Scholar
Pikelner, S.B. (1976). Physics of Space – Small Encyclopedia, p. 656. Sovetskaya Encyclopaedia, Moscow.Google Scholar
Saganti, P.B., Cucinotta, F.A., Wilson, J.W., Simonsen, L.C. & Zeitlin, C. (2004). Radiation climate map for analyzing risks to astronauts on the Mars surface from galactic cosmic rays. Space Sci. Rev., 110(1–2), 143156.Google Scholar
Sánchez, F.J., Mateo-Martí, E., Raggio, J., Meeben, J., Martínez-Frías, J., Sancho, L.G., Ott, S. & De la Torre, R. (2012). The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions – a model test for the survival capacity of an eukaryotic extremophile. Planet. Space Sci. 72–1, 102110.Google Scholar
Schorghofer, N. & Aharonson, O. (2005). Stability and exchange of subsurface ice on Mars. 110, E05003.Google Scholar
Schuerger, A.C., Mancinelli, R.L., Kern, R.G., Rothschild, L.J. & McKay, C.P. (2003). Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165, 253276.Google Scholar
Schuerger, A.C., Clausen, C. & Britt, D. (2011). Methane evolution from UV-irradiated spacecraft materials under simulated Martian conditions: implications for the Mars Science Laboratory (MSL) mission. Icarus 213, 393403.Google Scholar
Schuerger, A.C., Moores, J.E., Barlow, N., Clausen, C. & Britt, D. (2012). Methane evolution from UV-irradiated carbonaceous meteorites under simulated Martian conditions. JGR, Planets 117, E08007.Google Scholar
Smith, D.J., Schuerger, A.C., Davidson, M.M., Pacala, S.W., Bakermans, C. & Onstott, T.C. (2009). Survivability of Psychrobacter cryohalolentis K5 under simulated Martian surface conditions. Astrobiology 9(2), 221–8. doi: 10.1089/ast.2007.0231.Google Scholar
Tarasashvili, M.V., Aleksidze, N.G. (2010). Microbiological Remediation of Martian Soil for Future Terraformation of the Planet. Astrobiology Science Conference abstracts, http://www.lpi.usra.edu/meetings/abscicon2010/pdf/5229.pdfGoogle Scholar
Ten Kate, I.L., Ruiterkamp, R., Botta, O., Lehmann, B., Gomez Hernandez, C., Boudin, N., Foing, B.H. & Ehrenfreund, P. (2003). Investigating complex organic compounds in a simulated Mars environment. Int. J. Astrobiol. 1(4), 387399.CrossRefGoogle Scholar
Treffer, M., Kömle, N.I., Kargl, G., Kaufmann, E., Ulamec, S., Biele, J., Ivanov, A. & Funke, O. (2006). Preliminary studies concerning subsurface probes for the exploration of icy planetary bodies. Planet. Space Sci. 54, 621634.Google Scholar
Wilson, J.W. et al. (1995). NASA TP-3495.Google Scholar
Yu-Lei, D., Guang, C. & Zang, M.-S. (2003). Raman study of low-temperature phase transitions in polycrystalline Bi4Ti3O12 thin films. Chin. Phys. Lett. (China) 57, 744752.Google Scholar
Zeitlin, C. et al. (2004). Overview of the Martian radiation environment experiment. Adv. Space Res. 33, 22042210.Google Scholar
Zhukova, A.I. & Kondratyev, I.I. (1965). On artificial Martian conditions reproduced for microbiological research. Life Sci. Space Res. 3, 120126.Google Scholar
Zill, L.P., Mack, R. & DeVincenzi, D.L. (1979). Mars ultraviolet simulation facility. J. Mol. Evol. 14(1–3), 7989.Google Scholar