Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:07:45.576Z Has data issue: false hasContentIssue false

Observational signatures of self-destructive civilizations

Published online by Cambridge University Press:  23 October 2015

Adam Stevens
Affiliation:
Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK15 0BT, UK UK Centre for Astrobiology, University of Edinburgh, Edinburgh, EH9 3FD, UK
Duncan Forgan*
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
Jack O'Malley James
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK Department of Astronomy, Carl Sagan Institute, Cornell University, Ithaca, NY 14853, USA

Abstract

We address the possibility that intelligent civilizations that destroy themselves could present signatures observable by humanity. Placing limits on the number of self-destroyed civilizations in the Milky Way has strong implications for the final three terms in Drake's Equation, and would allow us to identify which classes of solution to Fermi's Paradox fit with the evidence (or lack thereof). Using the Earth as an example, we consider a variety of scenarios in which humans could extinguish their own technological civilization. Each scenario presents some form of observable signature that could be probed by astronomical campaigns to detect and characterize extrasolar planetary systems. Some observables are unlikely to be detected at interstellar distances, but some scenarios are likely to produce significant changes in atmospheric composition that could be detected serendipitously with next-generation telescopes. In some cases, the timing of the observation would prove crucial to detection, as the decay of signatures is rapid compared with humanity's communication lifetime. In others, the signatures persist on far longer timescales.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badescu, V. & Cathcart, R.B. (2000). Stellar engines for Kardashev's type II civilisations. J. Br. Interplanet. Soc. 53, 297306.Google Scholar
Ball, J.A. (1973). The zoo hypothesis. Icarus 19, 347349.Google Scholar
Barnes, J.W. & Fortney, J.A. (2004). Transit detectability of ring systems around extrasolar giant planets. Astrophys. J. 616, 11931203.10.1086/425067Google Scholar
Barstow, J.K., Aigrain, S., Irwin, P.G.J., Kendrew, S. & Fletcher, L.N. (2015). Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching. Mon. Not. R. Astron. Soc. 448, 25462561.10.1093/mnras/stv186Google Scholar
Barth, C.A., Stewart, A.I. & Hord, C.W. (1972). Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha. Icarus 17, 457468. http://www.sciencedirect.com/science/article/pii/0019103572900115Google Scholar
Baskin, N.J. et al. (2013). Secondary eclipse photometry of the Exoplanet WASP-5b with warm spitzer. Astrophys. J. 773, 5. article id. 124.Google Scholar
Batalha, N., Kalirai, J.S., Lunine, J.I. & Mandell, A. (2014). Transiting exoplanet simulations with the James Webb space telescope. In presented at American Astronomical Society, AAS Meeting #223, #325.03Google Scholar
Berger, E. (2013). Short duration gamma ray bursts. Annu. Rev. Astron. Astrophys. 52, 43105.10.1146/annurev-astro-081913-035926Google Scholar
Bostrom, N. (2003). Are we living in a computer simulation? Philos. Quart. 53(211), 243255.Google Scholar
Brin, G.D. (1983). The Great Silence – the Controversy Concerning Extraterrestrial Intelligent Life. Quarterly Journal of the Royal Society 24, 283309.Google Scholar
Buratti, B.J., Hillier, J.K. & Wang, M. (1996). The lunar opposition surge: observations by clementine. Icarus 124, 490499.Google Scholar
Burrows, A.S. (2014). Spectra as windows into exoplanet atmospheres. Proc. Nat. Acad. Sci. 111(35), 1260112609.Google Scholar
Canup, R.M. (2008). Lunar-forming collisions with pre-impact rotation. Icarus 196, 518538.Google Scholar
Charbonneau, D. et al. (2005). Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523529.10.1086/429991Google Scholar
Cirkovic, M.M. (2009). Fermi's paradox: the last challenge for copernicanism? Serbian Astron. J. 178, 120.Google Scholar
Cody, A.M. & Sasselov, D. (2004). Stellar evolution with enriched surface convection zones. I. General effects of planet consumption. Astrophys. J. 622, 704713.Google Scholar
Crawford, I. & Baxter, S. (2015). The lethality of interplanetary warfare: a fundamental constraint on extraterrestrial liberty. In The Meaning of Liberty Beyond Earth, ed. Cockell, C.S., pp. 187198. Springer International Publishing, London.Google Scholar
Dick, S.J. (2003). Cultural evolution, the postbiological universe and SETI. Int. J. Astrobiol. 2, 6574.Google Scholar
Domagal-Goldman, S.D., Meadows, V.S., Claire, M.W. & Kasting, J.F. (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11, 419441.Google Scholar
Dressing, C.D. & Charbonneau, D. (2013). The occurrence rate of small planets around small stars. Astrophys. J. 767, article id. 95.10.1088/0004-637X/767/1/95Google Scholar
Drexler, E. (1986). Engines of Creation: The Coming Era of Nanotechnology, ISBN-10 0385199732.Google Scholar
Dyson, F.J. (1960). Search for artificial stellar sources of infrared radiation. Science 131, 16671668.Google Scholar
Fischer, G. et al. (2011). Overview of Saturn Lightning Observations. In Proc. of the 7th Int. Workshop on Planetary, Solar and Heliospheric Radio Emissions (PRE VII), held at Graz, Austria, 15–17 September, 2010, pp. 135–144.Google Scholar
Fishman, G.J. & Meegan, C.A. (1995). Gamma ray bursts. Annu. Rev. Astron. Astrophys. 33, 415468.10.1146/annurev.aa.33.090195.002215Google Scholar
Ferrin, I. (2014). The impending demise of comet C/2012 S1 (ISON). Planet. Space Sci. 96, 114119.Google Scholar
Feynman, R.P. (1960). There's plenty of room at the bottom. Engineering and Science 23(5), 2236.Google Scholar
Fogg, M.J. (1987). Temporal aspects of the interaction among the first galactic civilizations The ‘Interdict Hypothesis. Icarus 69, 370384.10.1016/0019-1035(87)90112-6Google Scholar
Forgan, D.H. (2011). Spatio-temporal constraints on the zoo hypothesis, and the breakdown of total hegemony. Int. J. Astrobiol. 10, 341347.Google Scholar
Freitas (2000). Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations. Report to the Foresight Institute. http://www.rfreitas.com/Nano/Ecophagy.htm (accessed 7 July 14).Google Scholar
Galama, T.J. et al. (1998). Unusual Supernova in the error box of the gamma ray burst of 25th April 1998. Nature 395, 670672.Google Scholar
Gaudi, B.S., Chang, H.Y. & Cheongho, H. (2003). Probing structures of distant extrasolar planets with microlensing. Astrophys. J. 586, 527539.Google Scholar
Goudie, A.S. & Middleton, N.J. (2001). Saharan dust storms: nature and consequences. Earth-Sci. Rev. 56, 179204.Google Scholar
Greer, R.G.H. et al. (1986). ETON 1: a data base pertinent to the study of energy transfer in the oxygen nightglow. Planet. Space Sci. 34(9), 771788.10.1016/0032-0633(86)90074-7Google Scholar
Grenfell, J.L., Gebauer, S., Paris, P.v., Godolt, M. & Rauer, H. (2014). Sensitivity of biosignatures on Earth-like planets orbiting in the habitable zone of cool M-dwarf Stars to varying stellar UV radiation and surface biomass emissions. Planet. Space Sci. 98, 6676.Google Scholar
Groombridge, B. & Jenkins, M.D. (2002). Global Biodiversity: Earth's Living Resources in the 21st Century. University of California Press, Berkeley and Los Angeles, California.Google Scholar
Hair, T.W. (2011). Temporal dispersion of the emergence of intelligence: an inter-arrival time analysis. Int. J. Astrobiol. 10, 131135.Google Scholar
Hanson, R. (1998). The great filter: are we almost past it? http://hanson.gmu.edu/greatfilter.html (accessed 09/07/2014)Google Scholar
Hess, W.N. (1964). The Effects of High Altitude Explosions. National Aeronautics and Space Administration, Washington, DC. http://searchworks.stanford.edu/view/8599208Google Scholar
Howard, A.W. et al. (2004). Search for nanosecond optical pulses from nearby solar-type stars. ApJ 613, 12701284.Google Scholar
Imanaka, T., Fukutani, S., Yamamoto, M., Sakaguchi, A. & Hoshi, M. (2006). Radiological situation in the vicinity of semipalatinsk nuclear test site: dolon, mostik, cheremushka and budene settlements. J. Radiat. Res. 47(Suppl.), A121A127. http://jrr.oxfordjournals.org/content/47/Suppl_A/A101.full.pdf 10.1269/jrr.47.A121Google Scholar
Jackson, R.J., Ramsay, A.J., Christensen, C.D., Beaton, S., Hall, D.F. & Ramshaw, I.A. (2001). Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to smallpox. J. Virol. 75, 12051210.Google Scholar
Jacobson, S.A. & Morbidelli, A. (2014). Lunar and terrestrial planet formation in the grand tack scenario. Philos. Trans. R. Soc. A, 372, article id 0174Google Scholar
Johnson, N.L., Stansbery, E., Whitlock, D.O., Abercromby, K.J. & Shoots, D. (2008). History of On-Orbit Satellite Fragmentations, 14th edn. NASA Orbital Debris Program Office NASA/TM-2008–214779, Houston.Google Scholar
Kurzweil, R. (1999). The Age of Spiritual Machines: When Computers Exceed Human Intelligence. Penguin Books, New York.Google Scholar
Kardashev, N. (1964). Transmission of information by extraterrestrial civilizations. Soviet Astron. 8, 217221.Google Scholar
Kessler, D.J. & Cour-Palais, B.G. (1978). Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83, 26372646.Google Scholar
Kopparapu, R.K. et al. (2013). Habitable zones around main sequence stars: new estimates. Astrophys. J. 765, article id 131.Google Scholar
Kouveliotou, C., Meegan, C.A., Fishman, G.J., Bhat, N.P., Briggs, M.S., Koshut, T.M., Paciesas, W.S. & Pendleton, G.N. (1993). Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 413, L101L104.Google Scholar
Krasnopolsky, V.A. (1985). Oxygen emissions in the night airglow of the Earth, Venus and Mars. Planet. Space Sci. 34, 511518.Google Scholar
Kreidberg, L., Bean, J.L., Desert, J.-M., Benneke, B., Deming, D., Stevenson, K.B., Seager, S., Berta-Thompson, Z., Seifahrt, A. & Homeier, D. (2014). Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505(7481), 6972.Google Scholar
Kristensen, H.M. & Norris, R.M. (2014). Worldwide deployments of nuclear weapons. Bulletin of the Atomic Scientists August 26, 2014 0096340214547619Google Scholar
Krivov, A.V., Eiroa, C., Löhne, T., Marshall, J.P., Montesinos, B., del Burgo, C., Absil, O., Ardila, D., Augereau, J.-C. & Bayo, A., et al. (2013). Herschel's cold debris disks: background galaxies or quiescent rims of planetary systems? Astrophys. J. 772, article id 32.Google Scholar
Li, L.S., Lin, D.N.C. & Liu, X.W. Extent of pollution in planet-bearing stars. Astrophys. J. 685(2), 12101219.Google Scholar
Lin, H.W., Abad, G.G. & Loeb, A. (2014). Detecting industrial pollution in the atmospheres of earth-like exoplanets. Astrophys. J. 792, 4. article id L7.Google Scholar
Liou, J.C. (2006). Collision activities in the future orbital debris environment. Adv. Space Res. 38, 21022106.Google Scholar
Madhusudhan, N., Knutson, H., Fortney, J. & Barman, T. (2014). Exoplanetary atmospheres. In Protostars and Planets VI, ed. Beuther, H., Klessen, R., Dullemond, C. & Henning, Th. University of Arizona Press, Tucson, 739762.Google Scholar
Mamajek, E.E., Cuillen, A.C., Pecaut, M.J., Moolekamp, F., Scott, E.L., Kenworthy, M.A., Collier-Cameron, A. & Parley, N. (2015). Planetary construction zones in occultation: discovery of an extrasolar ring system transiting a young sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astrophys. J. 143, 15, article 72.Google Scholar
Mason, J., Stupl, J., Marshall, W. & Levit, C. (2011). Orbital debris-debris collision avoidance. Adv. Space Res. 48, 16431655.Google Scholar
Meléndez-Alvira, D.J., Meier, R.R., Picone, J.M., Feldman, P.D. & McLaughlin, B.M. (1999). Analysis of the oxygen nightglow measured by the Hopkins Ultraviolet Telescope: implications for ionospheric partial radiative recombination rate coefficients. J. Geophys. Res. 104(A7), 1490114913. doi: 10.1029/1999JA900136.Google Scholar
Misra, A., Meadows, V., Claire, M. & Crisp, D. (2014). Using dimers to measure biosignatures and atmospheric pressures for terrestrial planets. Astrobiology 14(2), 6786.10.1089/ast.2013.0990Google Scholar
Mustill, A.J. & Wyatt, M.C. (2011). A general model of resonance capture in planetary systems: first- and second-order resonances. MNRAS 413, 554572.Google Scholar
Nicholson, A. & Forgan, D.H. (2013). Slingshot dynamics for self-replicating probes and the effect on exploration timescales. IJA 12, 337344.Google Scholar
O'Malley-James, J., Greaves, J.S., Raven, J.A. & Cockell, C.S. (2013). Swansong Biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol. 12, 99112.Google Scholar
Petigura, E.A., Howard, A.W. & Marcy, G.W. (2013). Prevalence of Earth-size planets orbiting Sun-like stars. PNAS 110, 1927319278.Google Scholar
Phoenix, C. & Drexler, E. (2004). Safe exponential manufacturing. Nanotechnology 15, 869872.10.1088/0957-4484/15/8/001Google Scholar
Pilcher (2003). Biosignatures of early earths. Astrobiology 3, 471486.Google Scholar
Rampadarath, H., Morgan, J.S., Tingay, S.J. & Trott, C.M. (2012). The first very long baseline interferometric SETI experiment. Astron. J. 144(2), article id. 38.Google Scholar
Rauer, H. et al. (2014). The PLATO 2.0 mission. Exp. Astron. 38, 249330.Google Scholar
Reines, A.E. & Marcy, G.W. (2002). Optical search for extraterrestrial intelligence: a spectroscopic search for laser emission from nearby stars. Publ. Astron. Soc. Pac. 114, 416426.Google Scholar
Richard, M., Kronig, L., Belloni, F., Rossi, S., Gass, V., Araomi, S., Gavrilovich, I., Shea, H., Paccolat, C. & Thiran, J.P. (2013). Uncooperative Rendezvous and Docking for MicroSats: The Case for CleanSpace One, RAST paper. http://space.epfl.ch/ (accessed 10/07/14)Google Scholar
Richard, A.K. (1999). For radioactive waste from weapons, a home at last. Science 283(5408), 16261628.Google Scholar
Ricker, G.R. et al. (2014). Transiting Exoplanet Survey Satellite (TESS). Proc. SPIE 9143, 15. id. 914320.Google Scholar
Robock, A., Oman, L. & Stenchikov, G.L. (2007). Nuclear winter revisited with a modern climate model and current nuclear arsenals: still catastrophic consequences. J. Geophys. Res. 112, D13107.Google Scholar
Rothwell, P., Wager, J.H. & Sayers, J. (1963). Effect of the Johnston Island high-altitude nuclear explosion on the ionization density in the topside ionosphere. J. Geophys. Res. 68, 947949.Google Scholar
Sakaguchi, A., Yamamoto, M., Hoshi, M., Imanaka, T., Apsalikov, K.N. & Gusev, B.I. (2006). External radiation in dolon village due to local fallout from the first USSR atomic bomb test in 1949. J. Radiat. Res. 47(Suppl.), A101A116.Google Scholar
Schneider, J. et al. (2010). The far future of exoplanet direct characterization. Astrobiology 10, 121126.10.1089/ast.2009.0371Google Scholar
Siemion, A.P.V. et al. (2013). A 1.1–1.9 GHz SETI survey of the kepler field. I. A search for narrow-band emission from select targets. Astrophys. J. 767, article id. 94.10.1088/0004-637X/767/1/94Google Scholar
Shklovsky, J.S. & Sagan, C. (1966). Intelligent Life in the Universe. Holden-Day, San Francisco.Google Scholar
Tanvir, N. (2013). The highest redshift gamma ray bursts. In Proc. of the Seventh Huntsville Gamma Ray Burst Symp., Tennesse, April 2013.Google Scholar
Udry, S. et al. (2014). Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution, White Paper, arXiv:1412.1048.Google Scholar
Vukotic, B. & Cirkovic, M.M. (2008). Neocatastrophism and the Milky Way Astrobiological Landscape. Serbian Astron. J. 176, 7179.Google Scholar
Walpole, S.C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G. & Roberts, I. (2012). The weight of nations: an estimation of adult human biomass. BMC Public Health 12, 439.Google Scholar
Walters, C., Hoover, R.A. & Kotra, R.K. (1980). Interstellar colonization: a new parameter for the Drake equation? Icarus 41, 193197.Google Scholar
Waltham, D. (2015). Lucky Planet – Why Earth is Exceptional, and what that Means for Life in the Universe. Icon Books.Google Scholar
Ward, P. & Brownlee, D. (2000). Rare Earth: Why Complex Life is Uncommon in the Universe.Google Scholar
Webb, P. (2002). If the Universe Is Teeming with Aliens - Where Is Everybody?: Fifty Solutions to Fermi's Paradox and the Problem of Extraterrestrial Life. Copernicus, ISBN-10 0387955011.Google Scholar
Weiss, L. (2011). The 1979 South Atlantic Flash: The Case for an Israeli Nuclear Test. Stanford University. http://www.npolicy.org/article_file/The_1979_South_Atlantic_Flash__The_Case_for_an_Israeli_Nuclear_Test.pdf (accessed 17 April 2012).Google Scholar
Whitmire, D.P. & Wright, D.P. (1980). Nuclear waste spectrum as evidence of technological extraterrestrial civilizations. Icarus 42, 149156.Google Scholar
Wright, J.T., Mullan, B., Sigurdsson, S. & Povich, M.S. (2014). The G-Hat infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification. Astrophys. J. 792, 16, article id 26.Google Scholar
Zuluaga, J.I., Kipping, D.M., Sucerquia, M. & Alvarado, J.A. (2015). A novel method for identifying exoplanetary rings. Astrophys. J. 803(1), article id. L14, 7 pp.Google Scholar