Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T18:47:55.220Z Has data issue: false hasContentIssue false

The origin of life from primordial planets

Published online by Cambridge University Press:  22 September 2010

Carl H. Gibson
Affiliation:
University of California San Diego, La Jolla, CA 92093-0411, USA e-mail: cgibson@ucsd.edu
Rudolph E. Schild
Affiliation:
Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA e-mail: rschild@cfa.harvard.edu
N. Chandra Wickramasinghe
Affiliation:
Cardiff Centre for Astrobiology, 24 Llwynypia Road, Lisvane, Cardiff CF14 0SY, UK e-mail: NCWick@gmail.com

Abstract

The origin of life and the origin of the Universe are among the most important problems of science and they might be inextricably linked. Hydro-gravitational-dynamics cosmology predicts hydrogen–helium gas planets in clumps as the dark matter of galaxies, with millions of planets per star. This unexpected prediction is supported by quasar microlensing of a galaxy and a flood of new data from space telescopes. Supernovae from stellar over-accretion of planets produce the chemicals (C, N, O, P, etc.) and abundant liquid-water domains required for first life and the means for wide scattering of life prototypes. Life originated following the plasma-to-gas transition between 2 and 20 Myr after the big bang, while planetary core oceans were between critical and freezing temperatures, and interchanges of material between planets constituted essentially a cosmological primordial soup. Images from optical, radio and infrared space telescopes suggest life on Earth was neither first nor inevitable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bershadskii, A. (2006). Phys. Lett. A 360, 210216.CrossRefGoogle Scholar
Bershadskii, A. & Sreenivasan, K.R. (2002). Phys. Lett. A 299, 149152.CrossRefGoogle Scholar
Bershadskii, A. & Sreenivasan, K.R. (2003). Phys. Lett. A 319, 2123.CrossRefGoogle Scholar
Bouwens, R.J., Illingworth, G.D., Oesch, P.A., Stiavelli, M., van Dokkum, P., Trenti, M., Magee, D., Labbé, I., Franx, M., Carollo, C.M. & Gonzalez, V. (2010). Astrophys. J. Lett, 709, L133L137, arXiv:0909.1803v3.CrossRefGoogle Scholar
Elmegreen, D.M. et al. (2005). Astrophys. J. 631, 85–100.CrossRefGoogle Scholar
Furton, D.G. & Witt, A.N. (1992). Astrophys. J. 386, 587.CrossRefGoogle Scholar
Gahm, G. et al. (2007). Astrophys. J. 133, 17951809.Google Scholar
Gibson, C.H. (1981). Am. Inst. Aeronaut. Astronaut. 19, 1394.CrossRefGoogle Scholar
Gibson, C.H. (1986). J. Fluid Mech. 168, 89–117.CrossRefGoogle Scholar
Gibson, C.H. (1991). Proc. Roy. Soc. Lond. A 434, 149164.Google Scholar
Gibson, C.H. (1996). Appl. Mech. Rev. 49(5), 299315.CrossRefGoogle Scholar
Gibson, C.H. (1999). J. Mar. Syst. 21(1–4), 147167, astro-ph/9904237.CrossRefGoogle Scholar
Gibson, C.H. (2000). J. Fluids Eng. 122, 830835.CrossRefGoogle Scholar
Gibson, C.H. (2004). Flow Turbul. Combust. 72, 161179.CrossRefGoogle Scholar
Gibson, C.H. (2006). Turbulence, Encyclopedia of Physics, ed. Lerner, R.G. & Trigg, G.L., pp. 13101314. Addison-Wesley Publishing Co., Inc, London, UK.Google Scholar
Gibson, C.H. (2008). J. Appl. Fluid Mech. 1(2), 18, arXiv:astro-ph/0606073.Google Scholar
Gibson, C.H. (2009a). New Cosmology: Cosmology Modified by Modern Fluid Mechanics. Amazon.com, Inc., Seattle, Washington, USA. ISBN 978-1449507657.Google Scholar
Gibson, C.H. (2009b). New Cosmology II: Cosmology Modified by Modern Fluid Mechanics. Amazon.com, Inc., Seattle, Washington, USA. ISBN 978-1449523305.Google Scholar
Gibson, C.H. (2010). Turbulence and turbulent mixing in natural fluids, Physica Scripta Topical Issue, Turbulent Mixing and Beyond (TMBW '09), (in press), arXiv:1005.2772v4.Google Scholar
Gibson, C.H., Bondur, V.G., Keeler, R.N. & Leung, P.T. (2006). Int. J. Dyn. Fluids 2(2), 171212.Google Scholar
Gibson, C.H., Bondur, V.G., Keeler, R.N. & Leung, P.T. (2008). J. Appl. Fluid Mech. 1(1), 1142.Google Scholar
Gibson, C.H. & Schild, R.E. (1999a). Quasar-microlensing versus star-microlensing evidence of small-planetary-mass objects as the dominant inner-halo galactic dark matter, arXiv:astro-ph/9904362.Google Scholar
Gibson, C.H. & Schild, R.E. (1999b). Theory and observations of galactic dark matter, arXiv:astro-ph/9904366.Google Scholar
Gibson, C.H. & Schild, R.E. (2010). Interpretation of the Tadpole VV29 Merging Galaxy System using Hydro-Gravitational Theory, Physica Scripta Topical Issue, Turbulent Mixing and Beyond (TMBW '09), (in press), arXiv:astro-ph/0210583.Google Scholar
Gibson, C.H. (2005). The first turbulent combustion, Combust. Sci. and Tech., 177, 10491071, arXiv:astro-ph/0501416CrossRefGoogle Scholar
Gibson, C.H. & Schild, R.E. (2007a). Interpretation of the Helix Planetary Nebula using Hydro-Gravitational-Dynamics: Planets and Dark Energy, arXiv:astro-ph/0701474.Google Scholar
Gibson, C.H. & Schild, R.E. (2007b). Interpretation of the Stephan Quintet Galaxy Cluster using Hydro-Gravitational-Dynamics: Viscosity and Fragmentation, arXiv[astro-ph]:0710.5449.Google Scholar
Gibson, C.H. & Schild, R.E. (2009). J. Appl. Fluid Mech. 2(2), 3541, arXiv:0808.3228.Google Scholar
Gibson, C.H. & Wickramasinghe, N.C. (2010). The imperatives of Cosmic Biology. J. Cosmol. (in press), arXiv:1003.0091.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1977). Nature 270, 323.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1982). Proofs that Life is Cosmic, Mem. Inst. Fund. Studies Sri Lanka, No. 1 (http://www.panspermia.org/proofslifeiscosmic.pdf).Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1996). Astrophys. Space Sci. 235, 343.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life: Steps towards Panspermia. Kluwer Academic Press, Frankfurt.CrossRefGoogle Scholar
Israel, F.P. et al. (2010). Sub-millimeter to centimeter excess emission from the Magellanic Clouds. 1. Global spectral energy distribution, to be published in Astronom. Astrophys. 4 June, arXiv:1006.2232v1.Google Scholar
Jeans, J.H. (1902). Phil. Trans. 199A, 049.Google Scholar
Keeler, R.N., Bondur, V.G. & Gibson, C.H. (2005). Geophys. Res. Lett. 32, L12610.CrossRefGoogle Scholar
Matsuura, M., Speck, A.K., McHunu, B.M., Tanaka, I., Wright, N.J., Smith, M.D., Zijlstra, A.A., Viti, S. & Wesson, R. (2009). Astrophys. J. 700, 10671077.CrossRefGoogle Scholar
Meaburn, J. & Boumis, P. (2010). Mon. Not. R. Astron. Soc. 402, 381385, doi:10.1111/j.1365-2966.2009.15883.xCrossRefGoogle Scholar
Motta, V., Mediavilla, E. & Munoz, J.A. (2002). Astrophys. J. 574, 719.CrossRefGoogle Scholar
Nieuwenhuizen, T.M. (2009). Europhys. Lett. 86, 59001, arXiv:0812.4552.CrossRefGoogle Scholar
Nieuwenhuizen, T.M., Gibson, C.H. & Schild, R.E. (2009). Europhys. Lett. 88, 49001.CrossRefGoogle Scholar
Nomura, K.K. & Post, G.K. (1998). J. Fluid Mech. 377, 6597.CrossRefGoogle Scholar
Novronov, A. & Vovk, I. (2010). Science 328, 7375.CrossRefGoogle Scholar
Ofek, E.O. et al. (2010). Astrophys. J. 711, 517531.CrossRefGoogle Scholar
Peacock, J.A. (2000). Cosmological Physics. Cambridge University Press, Cambridge.Google Scholar
Peebles, P., James, E., Lyman, A., Page, R. Jr. & Partridge, B. (2009). Finding the Big Bang. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Perrin, J.M., Darbon, S. & Sivan, J.P. (1995). Astronom. Astrophys. 304, L2125, arXiv:astro-ph/9512046v1.Google Scholar
Renault, C. et al. (EROS-1 coll.) (1997). Astronom. Astrophys. 324, L69, astro-ph/9612102v2.Google Scholar
Schild, R. (1996). Astrophys. J. 464, 125.CrossRefGoogle Scholar
Schild, R.E & Gibson, C.H. (2008). Lessons from the Axis of Evil, axXiv[astro-ph]:0802.3229v2.Google Scholar
Schmitt-Kopplan, P. et al. (2010). Proc. Nat. Acad. Sci. 107(7), 2763–2668.CrossRefGoogle Scholar
Tran, H.D. et al. (2003). Astrophys. J. 585, 750.CrossRefGoogle Scholar
Veilleux, S. et al. (2009). Astrophys. J. Suppl. 182, 628666, doi:10.1088/0067-0049/182/2/628.CrossRefGoogle Scholar
Veneziana, M. et al. (2010). Properties of Galactic Cirrus Clauds observed by Boomerang, arXiv:0907.5012v2.Google Scholar
Weinberg, S. (2008). Cosmology. Oxford University Press, Oxford.CrossRefGoogle Scholar
Wickramasinghe, C. (2005). A Journey with Fred Hoyle, The Search for Cosmic Life. World Scientific Publ., Singapore.CrossRefGoogle Scholar
Wickramasinghe, C. (2010). Int. J. Astrobiol. 9(2), 119129, doi:10.1017/S14735504099990413.CrossRefGoogle Scholar
Wickramasinghe, C., Wallis, J. & Gibson, C.H. (2010a). Proc. SPIE 7819 (in press).Google Scholar
Wickramasinghe, C., Wallis, M.K, Wallis, J., Gibson, C.H., Al-Mufti, S. & Nori, M. (2010b). Proc. SPIE 7819 (in press).Google Scholar
Wickramasinghe, J.T. & Napier, W.M. (2008). Mon. Not. Roy. Astr. Soc. 387, 153.CrossRefGoogle Scholar
Wickramasinghe, J.T., Wickramasinghe, N.C. & Napier, W.M. (2010c). Comets and the Origin of Life. World Scientific Publ., Singapore.Google Scholar
Wickramasinghe, N.C., Wickramasinghe, J.T. & Mediavilla, E. (2004). Astrophys. Space Sci. 298, 453.CrossRefGoogle Scholar
Witt, A. & Schild, R. (1988). Astrophys. J. 325, 837.CrossRefGoogle Scholar