Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T18:03:28.007Z Has data issue: false hasContentIssue false

Planet formation in a triple stellar system: implications of the third star's orbital inclination

Published online by Cambridge University Press:  27 August 2014

R. C. Domingos*
Affiliation:
UNESP, Univ. Estadual Paulista, São João da Boa Vista, SP, Brazil UNESP, Univ. Estadual Paulista, Guaratinguetá, SP 12516-410, Brazil
O. C. Winter
Affiliation:
UNESP, Univ. Estadual Paulista, São João da Boa Vista, SP, Brazil
A. Izidoro
Affiliation:
UNESP, Univ. Estadual Paulista, Guaratinguetá, SP 12516-410, Brazil Capes Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Lagrange, BP 4229, 06304 Nice Cedex 4, France

Abstract

Planets have been revealed both in binary and triple stellar systems. Although there have been several studies of the late stages of planet formation in binary stars this process does not appear to have been studied in triple stellar systems. To understand how the late stage of planetary accretion is affected by a third companion, in this work we have numerically investigated the formation of planets in a hypothetical triple stellar system. The system is composed by an inner binary formed by two half-solar-mass components orbited by a solar-mass star. In our experiments, lunar and Mars-sized planetary embryos are distributed around the centre of mass of the inner binary system. Our main goal is to analyse how the formation of planets evolves depending on the orbital configuration of the massive distant companion. We have performed an extensive number of numerical simulations considering different orbital configurations for the third star. All simulations were numerically integrated for at least 107 years. The results show that when the protoplanetary disc and the stars are initially on coplanar orbits, one or two planets are quickly formed between 6 and 8 AU. In general such planets have also small eccentricities with values about 10−2. On the other hand, when the third star is considered initially on inclined orbits (even tiny values), there tends to occur a significant increase in the inclination of bodies of protoplanetary disc, which prevents the collisions between these objects and their growth. As a result, in this latter case we do not evidence the formation of planets during the timescale of our integrations but note the existence of several leftover objects that can survive for longer than 10 Myr, moving in orbits with semi-major axes ranging between ~6 and 8 AU. Thus, our results do not rule out the planet formation in this kind of stellar arrangements at all, but they indicate that, if planetary bodies keep stable orbits, the late stage of planet formation in systems with a highly inclined third star can be a very long process and many of these triple hierarchical systems might not have had time to form planets and planetary systems. They could be harbouring only debris discs, fragments or planetesimals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boden, A.F., Sargent, A.I., Akeson, R.L., Carpenter, J.M., Torres, G., Latham, D.W., Soderblom, D.R., Nelam, E., Franz, O.G. & Wasserman, L.H. (2005). Astron. J. 635, 442.Google Scholar
Chambers, J.E. (1999). Mon. Not. R. Astron. Soc. 304, 793.Google Scholar
Chambers, J.E. (2001). Icarus 152, 205.CrossRefGoogle Scholar
Chambers, J.E. & Wetherill, G.W. (1998). Icarus 136, 304.CrossRefGoogle Scholar
Correia, A.C.M., Laskar, J., Farago, F. & Boué, G. (2011). Celest. Mech. Dyn. Astron. 111, 105.CrossRefGoogle Scholar
Domingos, R.C., Winter, O.C. & Carruba, V. (2012). Astron. Astrophys. 544, A63.Google Scholar
Doyle, L.R., Carter, J.A., Fabrycky, d.C., Slawson, R.W. et al. (2011). Science. 333, 1602.CrossRefGoogle Scholar
Dvorak, R. (1986). Astron. Astrophys. 167, 379.Google Scholar
Ford, E.B., Kozinsky, B. & Rasio, F.A. (2000). Astrophys. J. 535, 385.CrossRefGoogle Scholar
Haghighipour, N. (2010). Book: Planets in Binary Star Systems. Springer, New York.Google Scholar
Haghighipour, N. & Raymond, S.N. (2007). Astrophys. J. 666, 436.Google Scholar
Hatzes, A.P., Cochran, W.D., Endl, M., McArthur, B., Paulson, D.B., Walker, G.A.H., Campbell, B. & Yang, S. (2003). Astrophys. J. 599, 1383.Google Scholar
Hayashi, C. (1981), Prog. Theor. Phys. Suppl. 70, 35.CrossRefGoogle Scholar
Heppenheimer, T.A. (1974), Icarus 22, 436.Google Scholar
Heppenheimer, T.A. (1978). Astron. Astrophys. 65, 421.Google Scholar
Holman, M.J. & Wiegert, P.A. (1999). Astron. J. 117, 621.Google Scholar
Innanen, K.A., Zheng, J.Q., Mikkola, S. & Valtonen, M. (1997). Astron. J. 113, 1915.Google Scholar
Kokubo, E. & Ida, S. (1998). Icarus 131, 171.CrossRefGoogle Scholar
Kokubo, E. & Ida, S. (2000). Icarus 143, 15.CrossRefGoogle Scholar
Kostov, V.B., McCullough, P.R., Hinse, T.C., Tsvetanov, Z.I., Hbrard, G., Díaz, R.F., Deleuil, M. & Valenti, J.A. (2013). Astrophys. J. 770, article id. 52CrossRefGoogle Scholar
Kostov, V.B. et al. (2014a). Astrophys. J. 784, article id. 14.CrossRefGoogle Scholar
Kostov, V.B. et al. (2014b). Astrophys. J. 787, article id. 93.CrossRefGoogle Scholar
Kozai, Y. (1962). Astron. J. 67, 591.Google Scholar
Lidov, M.L. (1962). Planet. Space Sci. 9, 719.CrossRefGoogle Scholar
Marzari, F. & Scholl, H. (2000). Astrophys. J. 543, 328.Google Scholar
Marzari, F., Thébault, P. & Scholl, H. (2009). Astron. Astrophys. 507, 505.CrossRefGoogle Scholar
Moriwaki, K. & Nakagawa, Y. (2004). Astrophys. J. 609, 1065.Google Scholar
Norwood, J.W. & Haghighipour, N. (2002). Br. Assoc. Am. Stud. 34, 892.Google Scholar
Orosz, J.A., Welsh, W.F., Carter, J.A., Fabrycky, D.C., Cochran, W.D., Endl, M., Ford, E.B., Haghighipour, N., MacQueen, P.J., Mazeh, T. et al. (2012a). Science 337, 1511.Google Scholar
Orosz, J.A., Welsh, W.F., Carter, J.A., Brugamyer, E., Buchhave, L.A., Cochran, W.D., Endl, M., Ford, E.B., MacQueen, P., Short, D.R. et al. (2012b). Astrophys. J. 758. Article id. 87, 14.Google Scholar
Paardekooper, S., Thébault, P. & Mellema, G. (2008). Mon. Not. R. Astron. Soc. 386, 973.CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W. & Flannery, B. (1996). Numerical Recipes in Fortran 77 – The Art of Scientific Computing, Cambridge University Press, New York.Google Scholar
Quintana, E.V. (2004) PhD Thesis, University of Michigan, Ann Arbor, 249 pp.Google Scholar
Quintana, E.V. & Lissauer, J.J. (2006). Icarus 185, 1.Google Scholar
Quintana, E.V., Lissauer, J.J., Chambers, J.E. & Duncan, M.J. (2002). Astrophys. J. 576, 982.CrossRefGoogle Scholar
Quintana, E.V., Adams, F.C., Lissauer, J.J. & Chambers, J.E. (2007). Astrophys. J. 660, 807.Google Scholar
Raghavan, D. et al. (2010). Astrophys. J. Suppl. 190, 1.CrossRefGoogle Scholar
Scholl, H., Marzari, F. & Thébault, P. (2007). Mon. Not. R. Astron. Soc. 380, 1119.Google Scholar
Schwamb, M. et al. (2013). Astrophys. J. 768, article id. 127.Google Scholar
Takeda, G. & Rasio, F.A. (2006). Astrophys. Space Sci. 304, 239.Google Scholar
Thébault, P., Marzari, F., Scholl, H., Turrini, D. & Barbieri, M. (2004). Astron. Astrophys. 427, 1097.Google Scholar
Thébault, P., Marzari, F. & Scholl, H. (2006). Icarus 183, 193.Google Scholar
Thébault, P., Marzari, F. & Scholl, H. (2008). Mon. Not. R. Astron. Soc. 388, 1528.CrossRefGoogle Scholar
Tokovinin, A. (1999). Astron. Lett. 25, 669.Google Scholar
Tokovinin, A. (2014). Astron. J. 147, 86.Google Scholar
Tokovinin, A.A. (1997a). Astron. Lett. 23, 727.Google Scholar
Tokovinin, A.A. (1997b). Astron. Astrophys. Suppl. Ser. 121, 71.Google Scholar
Tokovinin, A.A. (2008). Mon. Not. R. Astron. Soc. 389, 925.Google Scholar
Tokovinin, A.A., Thomas, S., Sterzik, M. & Udry, S. (2006). Astron. Astrophys. 450, 681.Google Scholar
Turrini, D., Barbieri, M., Marzari, F., Thebault, P. & Tricarico, P. (2005). Mem. S.A. It. Suppl. 6, 172.Google Scholar
Verrier, P.E. & Evans, N.W. (2009). Mon. Not. R. Astron. Soc. 394, 1721.Google Scholar
Welsh, W. et al. (2012). Nature 481, 475.CrossRefGoogle Scholar
Whitmire, D.P., Matese, J.L., Criswell, L. & Mikkola, S. (1998). Icarus 132, 196.Google Scholar
Xie, Ji-Wei & Zhou, Ji-Lin (2009). Astrophys. J. 698, 2066.Google Scholar