Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T04:53:30.591Z Has data issue: false hasContentIssue false

Searching for Earth-mass planets around α Centauri: precise radial velocities from contaminated spectra

Published online by Cambridge University Press:  19 August 2014

Christoph Bergmann*
Affiliation:
Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
Michael Endl
Affiliation:
McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA
John B. Hearnshaw
Affiliation:
Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
Robert A. Wittenmyer
Affiliation:
Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney 2052, Australia
Duncan J. Wright
Affiliation:
Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney 2052, Australia

Abstract

This work is part of an ongoing project which aims to detect terrestrial planets in our neighbouring star system α Centauri using the Doppler method. Owing to the small angular separation between the two components of the α Cen AB binary system, the observations will to some extent be contaminated with light coming from the other star. We are accurately determining the amount of contamination for every observation by measuring the relative strengths of the H-α and NaD lines. Furthermore, we have developed a modified version of a well-established Doppler code that is modelling the observations using two stellar templates simultaneously. With this method we can significantly reduce the scatter of the radial velocity (RV) measurements due to spectral cross-contamination and hence increase our chances of detecting the tiny signature caused by potential Earth-mass planets. After correcting for the contamination we achieve RV precision of ~2.5 m s−1 for a given night of observations. We have also applied this new Doppler code to four southern double-lined spectroscopic binary systems (HR159, HR913, HR7578 and HD181958) and have successfully recovered radial velocities for both components simultaneously.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borucki, W.J. et al. (2010). Science 327, 977.CrossRefGoogle Scholar
Dumusque, X. et al. (2012). Nature 491, 207.Google Scholar
Eggenberger, A., Udry, S., Mazeh, T., Segal, Y. & Mayor, M. (2007). Astron. Astrophys. 466, 1179.Google Scholar
Endl, M., Kürster, M. & Els, S. (2000). Astron. Astrophys. 362, 585.Google Scholar
Endl, M., Bergmann, C., Hearnshaw, J., Barnes, S.I., Wittenmyer, R.A., Ramm, D., Kilmartin, P., Gunn, F. & Brogt, E. (2014). Int. J. Astrobiol, doi: http://dx.doi.org/10.1017/S1473550414000081.Google Scholar
Fekel, F.C. Jr. & Beavers, W.I. (1983). Astrophys. J. 267, 682.CrossRefGoogle Scholar
Hatzes, A.P. (2013). Astrophys. J. 770, 133.CrossRefGoogle Scholar
Hearnshaw, J.B., Barnes, S.I., Kershaw, G.M., Frost, N., Graham, G., Ritchie, R. & Nankivell, G.R. (2002). Exp. Astron. 13, 59.CrossRefGoogle Scholar
Hearnshaw, J., Barnes, S., Endl, M. & Wittenmyer, R. (2013). Planets in the Solar System and beyond. In Proc. of the 11th Asian-Pacific Regional IAU Meeting, National Astronomical Research Institute of Thailand, Thailand.Google Scholar
Jenkins, J.S. & Tuomi, M. (2014). arXiv:1406.3093.Google Scholar
Kaltenegger, L. & Haghighipour, N. (2013). Astrophys. J. 777, 165.Google Scholar
Konacki, M. (2005). Nature 436, 230.Google Scholar
Konacki, M., Muterspaugh, M.W., Kulkarni, S.R. & Hełminiak, K.G. (2009). Astrophys. J. 704, 513.Google Scholar
Mayor, M. & Queloz, D. (1995). Nature 378, 355.Google Scholar
Mayor, M. et al. (2003). The Messenger 114, 20.Google Scholar
Pourbaix, D. et al. (2002). Astron. Astrophys. 386, 280.Google Scholar
Quintana, E.V. et al. (2014). Science 344, 277.Google Scholar
Ratajczak, M., Konacki, M., Kulkarni, S.R. & Muterspaugh, M.W. (2012). From interacting binaries to exoplanets: essential modeling tools. In Proc. of the IAU Symp. 282, Cambridge University Press, UK.Google Scholar
Tuomi, M. et al. (2013). Astron. Astrophys. 551, A79.CrossRefGoogle Scholar
Wang, S.X. et al. (2012). Astrophys. J. 761, 46.Google Scholar
Wittenmyer, R.A., Endl, M., Bergmann, C., Hearnshaw, J., Barnes, S.I. & Wright, D. (2014). Formation, detection, and characterization of extrasolar habitable planets. In Proc. of the IAU Symp. 293, Cambridge University Press, UK.Google Scholar
Wright, J.T. & Howard, A.W. (2009). Astrophys. J. Suppl. 182, 205.Google Scholar
Wright, J.T. & Howard, A.W. (2013). Astrophys. J. Suppl. 205, 22.CrossRefGoogle Scholar