Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T11:29:39.448Z Has data issue: false hasContentIssue false

Simulating super earth atmospheres in the laboratory

Published online by Cambridge University Press:  20 May 2015

R. Claudi*
Affiliation:
INAF – Osservatorio Astronomico di Padova, Vicolo Osservatorio, 5, I-35122, Padova, Italy
M. S. Erculiani
Affiliation:
INAF – Osservatorio Astronomico di Padova, Vicolo Osservatorio, 5, I-35122, Padova, Italy CISAS, Padova, Italy
G. Galletta
Affiliation:
Department of Physics and Astronomy, University of Padova, Padova, Italy
D. Billi
Affiliation:
Department of Biology, University of Rome “Tor Vergata”, Roma, Italy
E. Pace
Affiliation:
Departement of Physics and Astronomy, Florence University, Firenze, Italy LMS, INFN, Roma, Italy
D. Schierano
Affiliation:
Departement of Physics and Astronomy, Florence University, Firenze, Italy
E. Giro
Affiliation:
INAF – Osservatorio Astronomico di Padova, Vicolo Osservatorio, 5, I-35122, Padova, Italy
M. D'Alessandro
Affiliation:
INAF – Osservatorio Astronomico di Padova, Vicolo Osservatorio, 5, I-35122, Padova, Italy

Abstract

Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project ‘Atmosphere in a Test Tube’ is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, J.R.P., Cheng, A.Y.S. & Woolf, N.J. (1986). Nature 322, 341.Google Scholar
Ayres, T.R. (1997). J. Geophys. Res. 102, 1641.CrossRefGoogle Scholar
Batalha, N.H., Rowe, J.F. & Bryson, S.T. (2013). Astrophys. J. Suppl. Ser. 204, 24.Google Scholar
Bean, J.L., Miller – Ricci, E. & Homeier, D. (2010). Nature 468, 669.Google Scholar
Beer, A. (1852). Ann. Phys. 162, 78.Google Scholar
Behrendt, L., Schrameyer, V., Qvortrup, K., Lundin, L., Sørensen, S.J., Larkum, A.W. & Kühl, M. (2012). Appl. Environ. Microbiol. 78(11), 38963904. doi: 10.1128/AEM.00397-12. Epub 2012 Mar 30.Google Scholar
Biller, B.A., Liu, M.C., Wahhaj, Z., Nielsen, E.L., Hayward, T.L., Males, J.R., Skemer, A., Close, L.M., Chun, M., Ftalias, C. et al. (2013). Astrophys. J. 777, 160.Google Scholar
Billi, D., Viaggiu, E., Cockell, C.S., Rabbow, E., Horneck, G. & Onofri, S. (2011). Astrobiology 1, 6573.Google Scholar
Borucki, W. J., Koch, D.G., Basri, G., Batalha, N., Brown, T.M., Bryson, S.T., Caldwell, D., Christensen-Dalsgaard, J., Cochran, W.D., DeVore, E. et al. (2011). Astrophys. J. 736, 19.Google Scholar
Brown, T.M. (2001). Astrophys. J. 553, 1006.Google Scholar
Charbonneau, D., Allen, L.E., Megeath, S.T., Torres, G., Alonso, R., Brown, T.M., Gilliland, R.L., Latham, D.W., Mandushev, G., O'Donovan, F.T., Sozzetti, A. (2005). Astrophys. J. 626, 523.Google Scholar
Charbonneau, D., Berta, Z.K., Irwin, J., Burke, C.J., Nutzman, P., Buchhave, L.A., Lovis, C., Bonfils, X., Latham, D.W., Udry, S., Murray-Clay, R.A. et al. (2009). Nature 462, 891.CrossRefGoogle Scholar
Chauvin, G., Lagrange, A.-M., Zuckerman, B., Dumas, C., Mouillet, D., Song, I., Beuzit, J.-L., Lowrance, P., Bessell, M.S. (2005). Astron. Astrophys. 438, L29.Google Scholar
Chen, M., Telfer, A., Lin, S., Pascal, A., Larkum, A.W.D., Barber, J. & Blankenship, R.E. (2005). Photobiol. Sci. 4(12), 10601064.Google Scholar
Dole, S.H. (1964). “Life on Other Planets”, New York, Blaisdell Pub. Co.Google Scholar
Galletta, G., Bertoloni, G. & D'Alessandro, M. (2010). eprint arXiv1002.4077.Google Scholar
Galletta, G. et al. (2006). Origins of Life and Evolution of Biospheres, 36, p. 625.Google Scholar
Galletta, G. et al. (2007). Mem. S.A.It. 78, 608.Google Scholar
Gough, D.O. (1981). Sol. Phys. 74, 21.CrossRefGoogle Scholar
Haberle, R.M., McKay, C.P., Tyler, D. & Reynolds, R.T. (1996). In Circumstellar Habitable Zones: Proc. of the First Int. Conf., ed. Doyle, L.R., pp. 29. Travis House Publications, Menlo Park, CA.Google Scholar
Hargitai, H., Bérczi, S., Nagy, S., Gucsik, A., Kereszturi, A'. (2008). Lun. and Plan. Sc. Conf. 39, 1476.Google Scholar
Heath, M.J., Doyle, L.R., Joshi, M.M. & Haberle, R.M. (1999). Orig. Life Evol. Biosph. 29, 405424.CrossRefGoogle Scholar
Henry, T.J. (2004). In ASP Conference Series 318: Spectroscopically and Spatially Resolving the Components of the Close Binary Stars, ed. Hilditch, R.W., Hensberge, H. & Pavlovskipp, K., pp. 159. Astronomical Society of the Pacific, San Francisco.Google Scholar
Huang, S.-S. (1959). Proc. Astron. Soc. Pacific 71, 421.Google Scholar
Huang, S-S. (1960). Sci. Am. 202, 55.CrossRefGoogle Scholar
Ida, S. & Lin, D. (2004). Astrophys. J. 604, 388.CrossRefGoogle Scholar
Joshi, M.M. (2003). Astrobiology 3, 415.Google Scholar
Joshi, M.M., Haberle, R.M. & Reynolds, R.T. (1997). Icarus 129, 450.CrossRefGoogle Scholar
Kasting, J.F. & Catling, D. (2003). Annu. Rev. Astron. Astrophys. 41, 429.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108.Google Scholar
Kiang, N.Y., Siefert, J., Govindjee, , Blankenship, R.E. & Meadows, V.S. (2007a). Astrobiology 7(1) 222251.Google Scholar
Kiang, N.Y., Segura, A., Siefert, J., Tinetti, G., Govindjee, , Blankenship, R.E., Cohen, M., Siefert, J., Crisp, D. & Meadows, V.S. (2007b). Astrobiology 7(1), 252.CrossRefGoogle Scholar
Lafrenière, D., Doyon, R., Marois, C., Nadeau, D., Oppenheimer, B.R., Roche, P.F., Rigaut, F., Graham, J.R., Jayawardhana, R., Johnstone, D. et al. (2007). Astrophys. J. 670, 1367.Google Scholar
Lammer, H. et al. (2009). Astron. Astrophys. Rev. 17, 181.Google Scholar
Leger, A., Pirre, M. & Marceau, F.J. (1993). Astron. Astrophys. 277, 309.Google Scholar
McKay, C.P. (2000). Geophys. Res. Lett. 27, 2153.Google Scholar
Nutzman, P. & Charbonneau, D. (2008). Publ. Astron. Soc. Pacific 120, 317.Google Scholar
Mohr, R., Voss, B., Schliep, M., Kurz, T., Maldener, I., Adams, D.G., Larkum, A.D.W., Chen, M. & Hess, W.R. (2010). Int. Soc. for Micr. Ecol. Jour. 4, 1456.Google Scholar
Rivera, E.J. et al. (2005). Astrophys. J. 634, 625.Google Scholar
Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L.R. et al. (2013). J. Quant. Spectrosc. Radiat. Transfer 130, 4.CrossRefGoogle Scholar
Scheer, H., Green, B.R. & Parsons, W.E. (2003). Adv. Photosyn. Res. 13, 29.Google Scholar
Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R. & Zolotukhin, I. (2011). Astron. Astrophys. 532, A79.Google Scholar
Segura, A., Kasting, J.F., Meadows, V., Cohen, M., Scalo, J., Crisp, D., Butler, R.A.H. & Tinetti, G. (2005). Astrobiology 5, 706.Google Scholar
Selsis, F., Despois, D. & Parisot, J.-P. (2002). Astron. Astrophys. 388, 985.CrossRefGoogle Scholar
Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X. (2007). Astron. Astrophys. 476, 1373.Google Scholar
Tarter, J.C., Backus, P.R., Mancinelli, R.L., Aurnou, J.M., Backman, D.E., Basri, G.S., Boss, A.P., Clarke, A., Deming, D., Doyle, L.R. et al. (2007). Astrobiology 7, 30.Google Scholar
Tinetti, G., Rashby, S. & Yung, Y.L. (2006). Astrophys. J. 644, L129.Google Scholar
Tinetti, G., Liang, M.-C., Vidal-Madjar, A., Ehrenreich, D., Lecavelier des Etangs, A. & Yung, Y.L. (2007). Astrophys. J. 654, L99.Google Scholar
Valencia, D., Sasselov, D.D. & O'Connell, R.J. (2007). Astrophys. J., 665, 1413.CrossRefGoogle Scholar
Werle, P. (1998). Spectrochim. Acta A Mol. Biomol. Spectrosc. 54, 197.Google Scholar
Wolstencroft, R.D. & Raven, J.A. (2002). Icarus 157(2), 535548.Google Scholar
Zwietering, M.H., Jongenburger, I., Rombouts, F.M. & van't Riet, (1990). Appl. Environ. Microbiol. 56, 1875.Google Scholar