Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:07:19.425Z Has data issue: false hasContentIssue false

Surface flux patterns on planets in circumbinary systems and potential for photosynthesis

Published online by Cambridge University Press:  28 November 2014

Duncan H. Forgan*
Affiliation:
Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
Alexander Mead
Affiliation:
Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
Charles S. Cockell
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
John A. Raven
Affiliation:
Division of Plant Sciences, University of Dundee at TJHI, The James Hutton Institute, Invergowrie, Dundee, UK

Abstract

Recently, the Kepler Space Telescope has detected several planets in orbit around a close binary star system. These so-called circumbinary planets will experience non-trivial spatial and temporal distributions of radiative flux on their surfaces, with features not seen in their single-star orbiting counterparts. Earth-like circumbinary planets inhabited by photosynthetic organisms will be forced to adapt to these unusual flux patterns. We map the flux received by putative Earth-like planets (as a function of surface latitude/longitude and time) orbiting the binary star systems Kepler-16 and Kepler-47, two star systems which already boast circumbinary exoplanet detections. The longitudinal and latitudinal distribution of flux is sensitive to the centre-of-mass motion of the binary, and the relative orbital phases of the binary and planet. Total eclipses of the secondary by the primary, as well as partial eclipses of the primary by the secondary add an extra forcing term to the system. We also find that the patterns of darkness on the surface are equally unique. Beyond the planet's polar circles, the surface spends a significantly longer time in darkness than latitudes around the equator, due to the stars’ motions delaying the first sunrise of spring (or hastening the last sunset of autumn). In the case of Kepler-47, we also find a weak longitudinal dependence for darkness, but this effect tends to average out if considered over many orbits. In the light of these flux and darkness patterns, we consider and discuss the prospects and challenges for photosynthetic organisms, using terrestrial analogues as a guide.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandt, T.D. & Spiegel, D.S. (2014). eprint arXiv:1404.5337.Google Scholar
Brown, S.P., Mead, A.J., Forgan, D.H., Raven, J.A. & Cockell, C.S. (2014). Int. J. Astrobiol 13, 279289.CrossRefGoogle Scholar
Correia, A.C.M. & Laskar, J. (2004). Nature 429, 848.CrossRefGoogle Scholar
Cuntz, M. (2014). Astrophys. J. 780, 14.CrossRefGoogle Scholar
Dobrovolskis, A.R. (2007). Icarus 192, 1.CrossRefGoogle Scholar
Dobrovolskis, A.R. (2009). Icarus 204, 1.CrossRefGoogle Scholar
Dobrovolskis, A.R. (2013). Icarus 226, 760.CrossRefGoogle Scholar
Doyle, L.R. et al. (2011). Science (NY) 333, 1602.CrossRefGoogle Scholar
Dressing, C.D. & Charbonneau, D. (2013). Astrophys. J. 767, 95.CrossRefGoogle Scholar
Endres, K.-P. & Schad, W. (2002). Moon Rhythms in Nature: How Lunar Cycles Affect Living Organisms. Floris Books, Edinburgh.Google Scholar
Forgan, D. (2014). Mon. Not. R. Astron. Soc. 437, 1352.CrossRefGoogle Scholar
Forgan, D. & Kipping, D. (2013). Mon. Not. R. Astron. Soc. 432, 2994.CrossRefGoogle Scholar
Forgan, D. & Yotov, V. (2014). Mon. Not. R. Astron. Soc. 441, 3513.CrossRefGoogle Scholar
Haghighipour, N. & Kaltenegger, L. (2013). Astrophys. J. 777, 166.CrossRefGoogle Scholar
Hart, M.H. (1979). Icarus 37, 351.CrossRefGoogle Scholar
Heller, R. & Zuluaga, J.I. (2013). Astrophys. J. 776, L33.CrossRefGoogle Scholar
Henrard, J. & Murigande, C. (1987). Celest. Mech. 40, 345.CrossRefGoogle Scholar
Hinkel, N.R. & Kane, S.R. (2013). Astrophys. J. 774, 27.CrossRefGoogle Scholar
Holman, M.J. & Wiegert, P.A. (1999). Astron. J. 117, 621.CrossRefGoogle Scholar
Huang, S.-S. (1959). Publ. Astron. Soc. Pacific 71, 421.CrossRefGoogle Scholar
Kaltenegger, L. & Sasselov, D. (2011). Astrophys. J. 736, L25.CrossRefGoogle Scholar
Kane, S.R. & Gelino, D.M. (2012). Astrobiology 12, 940.CrossRefGoogle Scholar
Kane, S.R. & Hinkel, N.R. (2013). Astrophys. J. 762, 7.CrossRefGoogle Scholar
Kane, S.R., Ciardi, D.R., Gelino, D.M. & von Braun, K. (2012). Mon. Not. R. Astron. Soc. 425, 757.CrossRefGoogle Scholar
Kasting, J., Whitmire, D. & Reynolds, R. (1993). Icarus 101, 108.CrossRefGoogle Scholar
Kasting, J.F., Kopparapu, R., Ramirez, R.R. & Harman, C. (2013). Proc. Natl. Acad. Sci. U. S. A. 111, 1264112646.CrossRefGoogle Scholar
Kipping, D.M., Forgan, D., Hartman, J., Nesvorný, D., Bakos, G.A., Schmitt, A. & Buchhave, L. (2013). Astrophys. J. 777, 134.CrossRefGoogle Scholar
Kopparapu, R.K. et al. (2013). Astrophys. J. 765, 131.CrossRefGoogle Scholar
Kopparapu, R.K., Ramirez, R.M., SchottelKotte, J., Kasting, J.F., Domagal-Goldman, S. & Eymet, V. (2014). eprint arXiv:1404.5292Google Scholar
Leung, G.C.K. & Lee, M.H. (2013). Astrophys. J. 763, 107.CrossRefGoogle Scholar
Liu, H.-G., Zhang, H. & Zhou, J.-L. (2013). Astrophys. J. 767, L38.CrossRefGoogle Scholar
Livengood, T.A. et al. (2011). Astrobiology 11, 907.CrossRefGoogle Scholar
Mason, P.A., Zuluaga, J.I., Clark, J.M. & Cuartas-Restrepo, P.A. (2013). Astrophys. J. 774, L26.CrossRefGoogle Scholar
Mayor, M. & Queloz, D. (1995). Nature 378, 355.CrossRefGoogle Scholar
O'Malley-James, J.T., Raven, J.A., Cockell, C.S. & Greaves, J.S. (2012). Astrobiology 12, 115.CrossRefGoogle Scholar
Orosz, J.A. et al. (2012). Science (NY) 337, 1511.CrossRefGoogle Scholar
Peale, S.J. (1969). Astron. J. 74, 483.CrossRefGoogle Scholar
Petigura, E.A., Howard, A.W. & Marcy, G.W. (2013). Proc. Natl. Acad. Sci. U. S. A. 110, 19273.CrossRefGoogle Scholar
Quarles, B., Musielak, Z.E. & Cuntz, M. (2012). Astrophys. J. 750, 14.CrossRefGoogle Scholar
Raven, J. (2007). Nature 448, 418.CrossRefGoogle Scholar
Raven, J.A. & Cockell, C.S. (2006). Astrobiology 6, 668.CrossRefGoogle Scholar
Rein, , Fujii, & Spiegel, (2014). eprint arXiv:1404.6531.Google Scholar
Seager, S., Bains, W. & Hu, R. (2013a). Astrophys. J. 775, 104.CrossRefGoogle Scholar
Seager, S., Bains, W. & Hu, R. (2013b). Astrophys. J. 777, 95.CrossRefGoogle Scholar
Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X. (2007). Astron. Astrophys. 476, 1373.CrossRefGoogle Scholar
Shields, A.L., Bitz, C.M., Meadows, V.S., Joshi, M.M. & Robinson, T.D. (2014). Astrophys. J. 785, L9.CrossRefGoogle Scholar
Sota, T., Yamamoto, S., Cooley, J.R., Hill, K.B.R., Simon, C. & Yoshimura, J. (2013). Proc. Natl. Acad. Sci. U. S. A. 110, 6919.CrossRefGoogle Scholar
Stomp, M., Huisman, J., Stal, L.J. & Matthijs, H.C.P. (2007). ISME J. 1, 271.CrossRefGoogle Scholar
Underwood, D., Jones, B. & Sleep, P. (2003). Int. J. Astrobiol. 2, 289.CrossRefGoogle Scholar
Welsh, W.F. et al. (2012). Nature 481, 475.CrossRefGoogle Scholar
Williams, D.M. & Pollard, D. (2002). Int. J. Astrobiol. 1, 61.CrossRefGoogle Scholar
Wolstencroft, R. & Raven, J.A. (2002). Icarus 157, 535.CrossRefGoogle Scholar
Yang, J., Boué, G., Fabrycky, D.C. & Abbot, D.S. (2014). Astrophys. J. 787, L2.CrossRefGoogle Scholar