Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T18:01:32.141Z Has data issue: false hasContentIssue false

Transmitting signals over interstellar distances: three approaches compared in the context of the Drake equation

Published online by Cambridge University Press:  18 March 2013

Luc Arnold*
Affiliation:
Aix Marseille Université, CNRS, OHP (Observatoire de Haute Provence), Institut Pythéeas, UMS 3470, 04870 Saint-Michel-l'Observatoire, France e-mail: Luc.Arnold@oamp.fr

Abstract

I compare three methods for transmitting signals over interstellar distances: radio transmitters, lasers and artificial transits. The quantitative comparison is based on physical quantities depending on energy cost and transmitting time L, the last parameter in the Drake equation. With our assumptions, radio transmitters are the most energy-effective, while macro-engineered planetary-sized objects producing artificial transits seem effective on the long term to transmit an attention-getting signal for a time that might be much longer than the lifetime of the civilization that produced the artefact.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, M.L. (1999). The French Megajoule Laser Project (LMJ). Fusion Eng. Design 44, 4349.CrossRefGoogle Scholar
Annis, J. (1999). Placing a limit on star-fed Kardashev Type-III civilizations. J. Br. Interplanet. Soc. 52, 3336.Google Scholar
Arnold, L.F.A. (2005a). Transit light-curve signatures of artificial objects. Astrophys. J. 627, 534539.CrossRefGoogle Scholar
Arnold, L. (2005b). On artificial transits feasibility and SETI. In SF2A: Scientific Highlights 2005, Strasbourg, France, 27 June–1 July 2005, ed. Casoli, F. et al. , EDP-Sciences, Conference Series, pp. 207208.Google Scholar
Bahcall, J.N. (1986). Star counts and galactic structure. Annu. Rev. Astron. Astrophys. 24, 577611.CrossRefGoogle Scholar
Batalha, N.M., Rowe, J.F., Bryson, S.T. et al. . (2012). Planetary candidates observed by Kepler, III: analysis of the first 16 months of data. The Astrophysical Journal Supplement, 204(2), article id. 24, 21 pp. (2013).Google Scholar
Barnes, J.W. & Fortney, J.J. (2003). Measuring the oblateness and rotation of transiting extrasolar giant planets. Astrophys. J. 588, 545556.Google Scholar
Barnes, J.W. & Fortney, J.J. (2004). Transit detectability of ring systems around extrasolar giant planets. Astrophys. J. 616, 11931203.Google Scholar
Bottke, W.F. Jr., Vokrouhlicky, D., Rubincam, D.P. & Broz, M. (2002). The effect of Yarkovsky thermal forces on the dynamical evolution of asteroids and meteoroids. In Asteroids III, ed. Bottke, W.F. Jr. et al. , pp. 395408. University of Arizona, Tucson.CrossRefGoogle Scholar
Bracewell, R.N. (1960). Communications from superior galactic communities. Nature 186(4726), 670671.CrossRefGoogle Scholar
Bradbury, R.J. (2001). Dyson shells: a rétrospective. In Proc. SPIE: The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III, ed. Kingsley, S.A. & Bhathal, R., vol. 4273, pp. 5662. SPIE, Bellingham, Washington.Google Scholar
Bradbury, R.J., Cirkovik, M.M. & Dvosky, G. (2011). Dysonian approach to SETI: a fruitful middle ground? J. Br. Interplanet. Soc. 64, 156165.Google Scholar
Carrigan, R.A. Jr. (2009). IRAS-based whole-sky upper limit on Dyson spheres. Astrophys. J. 698(2), 20752086.CrossRefGoogle Scholar
Cirkovic, M.M. (2006). Macroengineering in the galactic context: a new agenda for astrobiology. In Macro-Engineering: A Challenge for the Future, ed. Badescu, V., Cathcart, R.B. & Schuiling, R.D., Chapter 13, p. 281. Springer, New York. (http://arxiv.org/abs/astro-ph/0606102).Google Scholar
Cocconi, G. & Morrison, P. (1959). Searching for interstellar communications. Nature 184, 844846.CrossRefGoogle Scholar
Connors, M., Wiegert, P. & Veillet, C. (2011). Earth's Trojan asteroid. Nature 475, 481483.CrossRefGoogle ScholarPubMed
Dermott, S.F. & Murray, C.D. (1981). The dynamics of tadpole and horseshoe orbits – I. Theory. Icarus 48, 111.Google Scholar
Dick, S.J. (2003). Cultural evolution, the postbiological universe and SETI. Int. J. Astrobiol. 2(1), 6574.CrossRefGoogle Scholar
Dick, S.J. (2008). The postbiological universe. Acta Astronaut. 62(8–9), 499504.Google Scholar
Drake, F.D. (1960). How can we detect radio transmissions from distant planetary systems? Sky Telescope 19, 140.Google Scholar
Dvorak, R., Lhotka, C. & Zhou, L. (2012). The orbit of 2010 TK7. Possible regions of stability for other Earth Trojan asteroids. Astron. Astrophys. 541, id.A127, 10pp.Google Scholar
Dyson, F.J. (1960). Search for artificial stellar sources of infrared radiation. Science 131(3414), 16671668.Google Scholar
Ellery, A., Tough, A. & Darling, D. (2003). J. Br. Interplanet. Soc. 56, 262287.Google Scholar
Freitas, R.A. Jr. (1980). A search for natural or artificial objects located at the earth – moon liberation points. Icarus 42, 442447.CrossRefGoogle Scholar
Freitas, R.A. Jr. (1983). The search for extraterrestrial artifacts (SETA). J. Br. Interplanet. Soc. 36, 501506.Google Scholar
Freitas, R.A. Jr. & Valdes, F. (1985). The search for extraterrestrial artifacts (SETA). Acta Astronaut. 36, 501506.Google Scholar
Harris, M.J. (1986). On the detectability of antimatter propulsion spacecraft. Astrophys. Space Sci. 123(2), 297303.Google Scholar
Harris, M.J. (2002). Limits from CGRO-EGRET data on the use of antimatter as a power source by extraterrestrial civilizations. J. Br. Interplanet. Soc. 55, 383393.Google Scholar
Howard, A.W. et al. (2004). Search for nanosecond optical pulses from nearby solar-type stars. Astrophys. J. 613, 12701284.Google Scholar
Jahreiss, H., Fuchs, B. & Wielen, R. (1999). Nearby stars and the history of the galactic disk, in galaxy evolution: connecting the distant universe with the local fossil record. In Proc. of a Colloquium on this subject held at the Observatoire de Paris-Meudon from 21–25 September 1998, ed. Spite, M., Observatoire de Paris, Meudon, France. Reprinted from Astrophys. Space Sci., 265, 1–4. Kluwer Academic Publishers, Dordrecht, p. 247.Google Scholar
Jugaku, J. & Nishimura, S. (2004). A search for Dyson spheres around late-type stars in the solar neighborhood, in Bioastronomy 2002: life among the stars. In Proc. of IAU Symposium 213, ed. Norris, R. & Stootman, F., p. 437. Astronomical Society of the Pacific, San Francisco, 2003.Google Scholar
Kilston, S., Shostak, S. & Henry, R.C. (2008). Who's looking at you, kid?: SETI advantages near the ecliptic plane. In AbSciCon 2008 Conf., April 14–17, Santa Clara, CA.Google Scholar
Kingsley, S.A. (2001). Optical SETI observatories in the new millennium: a review. In Proc. SPIE 4273: The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III, 20–26 January 2001, San Jose, California, USA, ed. Kingsley, S.A.. & Bhathal, R., pp. 7292.Google Scholar
McGee, B.W. (2010). A call for proactive xenoarchaeological guidelines – scientific, policy and socio-political considerations. Space Policy 26, 209213.Google Scholar
Mead., C. & Horowitz, P. (2010). Harvard's Advanced All-Sky Optical SETI. In Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond Proc. Astrobiology Science Conf. 2010, 26–20 April 2010, League City, Texas. LPI Contribution No. 1538, pp. 5622.Google Scholar
Michel, P. (1997). Overlapping of secular resonances in a Venus horseshoe orbit. Astron. Astrophys. 328, L5L8.Google Scholar
Papagiannis, M.D. (1978). Are we all alone, or could they be in the asteroid belt? Q. J. R. Astron. Soc. 19, 277281.Google Scholar
Raghavan, D., McAlister, H.A., Henry, T.J., Latham, D.W., Marcy, G.W., Mason, B.D., Gies, D.R., White, R.J. & ten Brummelaar, T.A. (2010). A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. 190(1), 142.CrossRefGoogle Scholar
Robin, A.C., Reylé, C., Derrière, S. & Picaud, S. (2003). A synthetic view on structure and evolution of the Milky Way, 2003. Astron. Astrophys. 409, 523540.CrossRefGoogle Scholar
Rose, C. & Wright, G. (2004). Inscribed matter as an energy-efficient means of communication with an extraterrestrial civilization. Nature. 431(7004), 4749.Google Scholar
Rouan, D. (2012). The CoRoT exoplanet programme: an overview of results. In SF2A-2012: Proc. of the Annual Meeting of the French Society of Astronomy and Astrophysics, ed. Boissier, S., de Laverny, P., Nardetto, N., Samadi, R., Valls-Gabaud, D. & Wozniak, H.Société Française d'Astronomie et d'Astrophysique (SF2A), Paris pp. 225228.Google Scholar
Ross, M. (1965). Search laser receivers for interstellar communications. In Proc. IEEE 53, 1780.CrossRefGoogle Scholar
Ross, M. (2000). Search strategy for detection of SETI short pulse laser signals. In A New Era in Bioastronomy ASP Conf. Series, vol. 213, ed. Lemarchand, G. & Meech, K.Astronomical Society of the Pacific (ASP), San Francisco, CA, pp. 541544.Google Scholar
Sagan, C. & Walker, R. G. (1966). The Infrared Detectability of Dyson Civilizations. Astrophysical Journal 144, 12161218.Google Scholar
Scholl, H., Marzari, F. & Tricarico, P. (2005). The instability of Venus Trojans. Astron. J. 130, 29122915.Google Scholar
Schwartz, R.N. & Townes, C.H. (1961). Interstellar and interplanetary communication by optical masers. Nature 190, 205208.Google Scholar
Slysh, V.I. (1985). A search in the infrared to microwave for astroengineering activity. In Proc. of the Symposium: The Search for Extraterrestrial Life: Recent Developments, Boston, MA, 18–21 June 1984 (A86–38126 17–88). D. Reidel Publishing Co., Dordrecht, pp. 315319.CrossRefGoogle Scholar
Tarter, J. (2001). The search for extraterrestrial intelligence (SETI). Annu. Rev. Astron. Astrophys. 39, 511548.Google Scholar
Turnbull, M.C. & Tarter, J.C. (2003). Target selection for SETI. I. A catalog of nearby habitable stellar systems. Astrophys. J. Suppl. Ser. 145(1), 181198.Google Scholar
Ulmschneider, P. (2003). Intelligent Life in the Universe. Springer-Verlag, Berlin, Heidelberg, Second Printing 2004, pp. 7273.CrossRefGoogle Scholar
Winn, J.N. (2008). Measuring accurate transit parameters. In Transiting Planets, Proc. of the International Astronomical Union, IAU Symposium, vol. 253, pp. 99109.Google Scholar