Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T19:24:05.119Z Has data issue: false hasContentIssue false

The use of complex microbial soil communities in Mars simulation experiments

Published online by Cambridge University Press:  11 August 2008

Kai Finster
Affiliation:
Department of Biological Sciences – Microbiology, University of Aarhus, 8000 Aarhus C, Denmark e-mail: kai.finster@biology.au.dk
Aviaja A. Hansen
Affiliation:
Department of Biological Sciences – Microbiology, University of Aarhus, 8000 Aarhus C, Denmark e-mail: kai.finster@biology.au.dk
Lars Liengaard
Affiliation:
Department of Biological Sciences – Microbiology, University of Aarhus, 8000 Aarhus C, Denmark e-mail: kai.finster@biology.au.dk
Karina Mikkelsen
Affiliation:
Department of Biological Sciences – Microbiology, University of Aarhus, 8000 Aarhus C, Denmark e-mail: kai.finster@biology.au.dk
Tommy Kristoffersen
Affiliation:
Department of Biological Sciences – Microbiology, University of Aarhus, 8000 Aarhus C, Denmark e-mail: kai.finster@biology.au.dk
Jonathan Merrison
Affiliation:
Department of Physics and Astronomy, University of Aarhus, 8000 Aarhus C, Denmark
Per Nørnberg
Affiliation:
Department of Earth Sciences, University of Aarhus, 8000 Aarhus C, Denmark
Bente Aa. Lomstein
Affiliation:
Department of Biological Sciences – Microbiology, University of Aarhus, 8000 Aarhus C, Denmark e-mail: kai.finster@biology.au.dk

Abstract

Mars simulation studies have in the past mainly investigated the effect of the simulation conditions such as UV radiation, low pressure and temperature on pure cultures and much has been learnt about the survival potential of sporeformers such as Bacillus subtilis. However, this approach has limitations as the studies only investigate the properties of a very limited number of microorganisms. In this paper we propose that Mars simulations should be carried out with complex microbial communities of Martian analogues such as permafrost or the deep biosphere. We also propose that samples from these environments should be studied by a number of complementary methods and claim that these methods in combination can provide a comprehensive picture of how imposed Martian conditions affect the microbial community and in particular the survival of its constituents – microbes as well as biological material in general. As an interesting consequence this approach can lead to the isolation of bacteria, which are more recalcitrant to the imposed Martian conditions than the pure cultures that have previously been studied.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amann, R.I., Ludwig, W. & Schleifer, K.H. (1995). Phylogenetic identification and in situ detection of individual cells without cultivation. Microbiol. Rev. 59, 143169.CrossRefGoogle ScholarPubMed
Boynton, W.V. et al. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 8185.CrossRefGoogle ScholarPubMed
Bruns, A., Cypionka, H. & Overmann, J. (2002). Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the Centra Baltic Sea. Appl. Environ. Microbiol. 68, 39783987.CrossRefGoogle Scholar
Des Marais, D. et al. (2001). The NASA astrobiological roadmap. Astrobiology 3, 211235.Google Scholar
Gish, F., Schubert, K., Bruns, A., Hoffelner, H. & Overmann, J. (2005). Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl. Environ. Microbiol. 71, 59085919.Google Scholar
Glavin, D.P., Cleaves, H.J., Schubert, M., Aubrey, A. & Bada, J. (2004). New method for estimating bacterial cell abundances in natural samples by use of sublimation. Appl. Environ. Microbiol. 70, 59235928.CrossRefGoogle ScholarPubMed
Graham, J.M. (2004). The biological terraforming of Mars: planetary ecosystems as ecological succession on a global scale. Astrobiology 4, 168195.CrossRefGoogle ScholarPubMed
Hansen, A.A., Merrison, J., Nørnberg, P., Lomstein, B.Aa. & Finster, K. (2005). Activity and stability of a complex bacterial soil community under simulated Martian conditions. Int. J. Astrobiol. 4, 135144.CrossRefGoogle Scholar
Hansen, A.A., Herbert, R.A., Mikkelsen, K., Jensen, L.L., Kristoffersen, T., Tiedje, J.M., Lomstein, B.Aa. & Finster, K.W. (2007). Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ. Microbiol. 9, 28702884.CrossRefGoogle Scholar
Horneck, G. (2000). The microbial world and the case of Mars. Planet. Space Sci. 48, 10531063.CrossRefGoogle Scholar
Jensen, L.L., Merrison, J., Hansen, A.A., Mikkelsen, K.A., Kristoffersen, T., Nørnberg, P., Lomstein, B.Aa. & Finster, K. (2008). A facility for long-term Mars simulation experiments. Astrobiology (in press).CrossRefGoogle ScholarPubMed
Kaeberlein, T., Lewis, K. & Epstein, S.S. (2002). Isolating “uncultiviable” microorganisms in pure culture in a simulated natural environment. Science 296, 11271229.CrossRefGoogle Scholar
Krasnopolsky, V.A., Maillard, J.P. & Owen, T.C. (2004). Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537547.CrossRefGoogle Scholar
Kuzmin, R.O., Zabalueva, E.V., Mitrofanov, I.G., Litvak, M.L., Boynton, W.V. & Saunders, R.S. (2004). Regions of potential existence of free water (ice) in the near-surface Martian Ground: Results from the Mars Odyssey high-energy neutron detector (HEND). Sol. Syst. Res. 38, 111.CrossRefGoogle Scholar
La Duc, M.T., Nicholson, W.L., Cern, R. & Venkateswaran, K. (2003). Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ. Microbiol. 5, 977985.CrossRefGoogle ScholarPubMed
Leser, T.D, Amenuvor, J.Z., Jensen, T.K., Lindecrona, R.H., Boye, M. & Møller, K. (2002) Culture-Independent Analysis of Gut Bacteria: the Pig Gastrointestinal Tract Microbiota Revisited. Appl. Environ. Microbiol. 68, 673690.CrossRefGoogle ScholarPubMed
Lund, B.A. & Blackburn, T.H. (1989). Urea turnover in a coastal marine sediment measured by a 14C-urea short-term incubation. J. Microbiol. Meth. 9, 297308.CrossRefGoogle Scholar
Masashi, G. & Shoji, T. (1999). A method of profiling microbial communities based on a Most-Probable-Number assay that uses BIOLOG plates and multiple sole carbon sources. Appl. Environ. Microbiol. 65, 44194424.Google Scholar
McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite AHL8400. Science 273, 924930.CrossRefGoogle Scholar
Monod, J. (1971). Le Hasard et la Necessite; essai sur la philosophie naturelle de la biologie moderne. Edité par SEUIL, Paris.Google Scholar
Muyzer, G.S., De Waal, E.C. & Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695700.CrossRefGoogle Scholar
Navarro-González, R. et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302, 10181021.CrossRefGoogle ScholarPubMed
Olsen, G.J., Woese, C.R. & Overbeek, R. (1994). The winds of evolutionary change: breathing new life into microbiology. J. Bacteriol. 176, 16.CrossRefGoogle ScholarPubMed
Poole, A.M. & Willerslev, E. (2007). Can idenstification of a fourth domain of life be made from sequence data alone, and could it be done on Mars? Astrobiology 7, 801814.CrossRefGoogle ScholarPubMed
Sait, M., Hugenholtz, P. & Janssen, P. (2002). Cultivation of globally-distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4, 654666.CrossRefGoogle ScholarPubMed
Science 306, 19852148.Google Scholar
Sekar, R., Pernthaler, A., Pernthaler, J., Warnecke, F., Posch, T. & Amann, R. (2003). An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol. 69, 29282935.CrossRefGoogle ScholarPubMed
Sims, M.R., Cullen, D.C., Bannister, N.P., Grant, W.D., Henry, O., Jones, R., McKnight, D., Thompson, D.P. & Wilson, P.K. (2005) The specific molecular identification of life experiment (SMILE). Planet. Space Sci. 53, 781791.CrossRefGoogle Scholar
Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M. & Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplore “rare biosphere”. Proc. Natl. Acad. Sci. USA 103, 1211512120.CrossRefGoogle Scholar
Venkateswaran, K., Chung, S., Allton, J. & Kern, R. (2004). Evaluation of various cleaning methods to remove Bacillus spores form spacecraft hardware materials. Astrobiology 4, 377390.Google Scholar
Zengler, K., Toledo, G., Rappé, M., Elkins, J., Mathur, E.J., Short, J.M. & Keller, M. (2002). Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15 68115 686.CrossRefGoogle ScholarPubMed