Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:57:34.867Z Has data issue: false hasContentIssue false

Which exoplanetary systems could harbour habitable planets?

Published online by Cambridge University Press:  12 October 2006

Barrie W. Jones
Affiliation:
Astronomy Group, The Open University, Milton Keynes MK7 6AA, UK e-mail: b.w.jones@open.ac.uk
P. Nick Sleep
Affiliation:
Astronomy Group, The Open University, Milton Keynes MK7 6AA, UK e-mail: b.w.jones@open.ac.uk
David R. Underwood
Affiliation:
Astronomy Group, The Open University, Milton Keynes MK7 6AA, UK e-mail: b.w.jones@open.ac.uk

Abstract

Habitable planets are likely to be broadly Earth-like in composition, mass and size. Masses are likely to be within a factor of a few Earth masses – we call such planets Earth-mass planets. It is important to find such planets. Currently, we do not have sufficiently sensitive techniques to detect planets with such small masses, except in rare circumstances. It is thus necessary to model the known exoplanetary systems to see whether Earth-mass planets could be present. In particular, we need to establish whether such planets could be present in the classical habitable zone (HZ), or whether the giant planets that we know to be present have gravitationally ejected Earth-mass planets or prevented their formation. We have answered this question by applying computer models to the 152 exoplanetary systems known as of 18 April 2006 that are sufficiently well characterized for our analysis. For systems in which there is a giant planet interior to the HZ, which must have got there by migration, there are two cases considered: first, the case when the migration of the giant planet across the HZ has not ruled out the existence of an Earth-mass planet in the HZ; second, the case where it has. In the former case we have found that 60% of the 152 systems offer safe havens to Earth-mass planets across greater than 20% of the HZ width. We regard such systems as being habitable today. We have also estimated whether habitability is possible for 1000 Myr into the past (provided that this period post-dates the heavy bombardment of planets in the HZ). Of the 143 systems that are susceptible to this second analysis, we find that about 50% offer habitability sustained over 1000 Myr. If giant planets interior to the HZ rule Earth-mass planets, then 60% and 50% fall to 7% in both cases.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)