Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T20:08:16.370Z Has data issue: false hasContentIssue false

Capacitive and ohmic RF NEMS switches based on vertical carbon nanotubes

Published online by Cambridge University Press:  07 December 2010

A. Ziaei*
Affiliation:
Thales R&T France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91767 Palaiseau Cedex, France.
M. Charles
Affiliation:
Thales R&T France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91767 Palaiseau Cedex, France.
M. Le Baillif
Affiliation:
Thales R&T France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91767 Palaiseau Cedex, France.
S. Xavier
Affiliation:
Thales R&T France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91767 Palaiseau Cedex, France.
A. Caillard
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, UMR 7647 Ecole Polytechnique-CNRS, Route de Saclay, 91128 Palaiseau Cedex, France.
C.S. Cojocaru
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, UMR 7647 Ecole Polytechnique-CNRS, Route de Saclay, 91128 Palaiseau Cedex, France.
*
Corresponding author: Ziaei Afshin Email: afshin.ziaei@thalesgroup.com

Abstract

The objective is to demonstrate a reproducible carbon nanotube (CNT)-based technology for radio frequency (RF) switch working in the range of 40–60 GHz and fulfilling the specifications: low losses, high isolation, and an operating voltage below 30 V. The first processed component had an operating voltage of 14 V for an ohmic contact in a Nano-Electro Mechanical System (NEMS) tweezer design. This result is confirmed by theory with an operating voltage of 13 V. A capacitive-contact NEMS is also developed using multi-walled CNTs (MWCNTs) coated with a SiO2 dielectric layer deposited by electron beam induced deposition method (EBID). High Frequency Simulation Software (HFSS) RF-simulation on an innovative NEMS geometry shows encouraging results with transmission ratios between “on” state and “off” state up to 34% for ohmic-contact switch and 25% for a capacitive-contact switch.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Dragoman, M. et al. : Nanoelectromechanical switches based on carbon nanotubes for microwave and millmeter waves. Appl. Phys. Lett., 90 (2007), 113102/1-3.CrossRefGoogle Scholar
[2]Ijima, S.: Helical microtubules of graphitic carbon. Nature, 354 (1991), 56.CrossRefGoogle Scholar
[3]Jun, S.C. et al. : Radio-frequency transmission characteristics of a multi-walled carbon nanotube. Nanotechnology, 18 (25) (2007).CrossRefGoogle Scholar
[4]Grimes, C.A. et al. : Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes. J. Appl. Phys., 90 (2001), 4134.CrossRefGoogle Scholar
[5]Poncharal, P. et al. : Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 283 (5407) (1999), 15131516.CrossRefGoogle ScholarPubMed
[6]Kim, P. et al. : Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 87 (2001), 215502.CrossRefGoogle ScholarPubMed
[7]Jang, J.E. et al. : Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl. Phys. Lett., 87 (16) (2005), id. 163114 (3pp.).CrossRefGoogle Scholar
[8]Dequesnes, M. et al. : Calculation of pull-in voltages for carbon nanotube based nano electromechanical switches. Nanotechnology, 13 (1) (2002), 120131.CrossRefGoogle Scholar
[9]Rols, S. et al. : Phonon density of states of single-wall carbon nanotubes. Phys. Rev. Lett., 85 (2000), 5222.CrossRefGoogle ScholarPubMed
[10]Melechko, A.V. et al. : Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys., 97 (2005), 041301.CrossRefGoogle Scholar
[11]Cojocaru, C.S. et al. : On the role of activation mode in the plasma and hot filaments-enhanced catalytic chemical vapour deposition of vertically aligned carbon nanotubes. Thin Solid Films, 515 (1) (2006), 5358.CrossRefGoogle Scholar
[12]Cojocaru, C.S. et al. : Field emission from carbon nanotubes and metallic nanowires, in IDW ‘08: Proceedings of the 15th International Display Workshops, Niigata, Japan, 2008.Google Scholar
[13]Kittel, C.: Physique de l’état solide, 5ème éd., John Wiley & Sons, Inc., New York, 1976, 103121.Google Scholar
[14]Javey, A. et al. : Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett., 2 (9) (2002), 52225225.CrossRefGoogle Scholar
[15]von Hippel, A.: Dielectrics and waves. Artech House Microw. Libr., (1994), 61.Google Scholar