Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T20:18:29.279Z Has data issue: false hasContentIssue false

Highlighting trapping phenomena in microwave GaN HEMTs by low-frequency S-parameters

Published online by Cambridge University Press:  05 February 2015

Clément Potier*
Affiliation:
XLIM – UMR 7252, Université de Limoges/CNRS, 87060 Limoges Cedex, France. Phone: +33 160 403 024 III-V Lab, 91461 Marcoussis Cedex, France
Jean-Claude Jacquet
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Christian Dua
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Audrey Martin
Affiliation:
XLIM – UMR 7252, Université de Limoges/CNRS, 87060 Limoges Cedex, France. Phone: +33 160 403 024
Michel Campovecchio
Affiliation:
XLIM – UMR 7252, Université de Limoges/CNRS, 87060 Limoges Cedex, France. Phone: +33 160 403 024
Mourad Oualli
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Olivier Jardel
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Stéphane Piotrowicz
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Sylvain Laurent
Affiliation:
XLIM – UMR 7252, Université de Limoges/CNRS, 87060 Limoges Cedex, France. Phone: +33 160 403 024
Raphaël Aubry
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Olivier Patard
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Piero Gamarra
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Marie-Antoinette di Forte-Poisson
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Sylvain L. Delage
Affiliation:
III-V Lab, 91461 Marcoussis Cedex, France
Raymond Quéré
Affiliation:
XLIM – UMR 7252, Université de Limoges/CNRS, 87060 Limoges Cedex, France. Phone: +33 160 403 024
*
Corresponding author: C. Potier Email: clement.potier@xlim.fr

Abstract

This paper presents an original characterization method of trapping phenomena in gallium nitride high electron mobility transistors (GaN HEMTs). This method is based on the frequency dispersion of the output-admittance that is characterized by low-frequency S-parameter measurements. As microwave performances of GaN HEMTs are significantly affected by trapping effects, trap characterization is essential for this power technology. The proposed measurement setup and the trap characterization method allow us to determine the activation energy Ea and the capture cross-section σn of the identified traps. Three original characterizations are presented here to investigate the particular effects of bias, ageing, and light, respectively. These measurements are illustrated through different technologies such as AlGaN/GaN and InAlN/GaN HEMTs with non-intentionally doped or carbon doped GaN buffer layers. The extracted trap signatures are intended to provide an efficient feedback to the technology developments

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Binari, S.C.; Klein, P.B.; Kazior, T.E.: Trapping effects in GaN and SiC microwave FETs, In Proc. of the IEEE, 90 (6) (2002), 10481058.Google Scholar
[2] Lang, D.V.: Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys., 45 (7) (1974), 30233032.Google Scholar
[3] Gavryushin, V.: Deep level saturation spectroscopy. Int. J. Opt., ID. 505023, 2012 (2012), 116.Google Scholar
[4] Jardel, O. et al. : Modeling of Trap Induced Dispersion of Large Signal Dynamic Characteristics of GaN HEMTs, in IEEE/MTT-S Int. Microwave Symp., Seattle, 2013, 1–4.Google Scholar
[5] El Rafei, A. et al. : DC (10 Hz) to RF (40 GHz) output conduction extraction by S-parameters measurements for in-depth characterization of AlInN/GaN HEMTS, focusing on low frequency dispersion effects, in European Microwave Conf. (EuMIC), Manchester, 2011.Google Scholar
[6] Umana-Membreno, G.A. et al. : Low-temperature shallow-trap related output-admittance frequency dispersion in AlGaN/GaN MODFETs, in Conf. on Optoelectronic and Microelectronic Materials Devices, Perth, 1998, 252–255.Google Scholar
[7] Potier, C. et al. : Trap characterization of microwave GaN HEMTs based on frequency dispersion of the output-admittance, in European Microwave Conf., Roma, 2014.Google Scholar
[8] Camacho-Peñalosa, C.; Aitchison, C.S.: Modelling frequency dependence of output impedance of a microwave MESFET at low frequencies. Electron. Lett., 21 (12) (1985), 528529.Google Scholar
[9] Nsele, S.D.; Escotte, L.; Tartarin, J.G.; Piotrowicz, S.; Delage, S.L.: Broadband frequency dispersion small-signal modeling of the output conductance and transconductance in AlInN/GaN HEMTs. IEEE Trans. Electron Devices, 60 (4) (2013), 13721378.Google Scholar
[10]Agilent E5061B Network Analyzer, Agilent data sheet, http://cp.literature.agilent.com/litweb/pdf/5990-6794EN.pdf Google Scholar
[11] Mitrofanov, O.; M. Manfra, M.: Poole–Frenkel electron emission from the traps in AlGaN/GaN transistors. J. Appl. Phys., 95 (11) (2004), 64146419.Google Scholar
[12] Kayis, C.; Zhu, C.Y.; Mo, W.; Li, X.; Ozgur, U.; Morkoc, H.: Field-assisted emission in AlGaN/GaN heterostructure field-effect transistors using low-frequency noise technique. J. Appl.Phys., 109 (8) (2011), 084522–084522–5.Google Scholar
[13] Götz, W.; Johnson, N.M.; Bremser, M.D.; Davis, R.F.: A donor like deep level defect in Al0.12Ga0.88N characterized by capacitance transient spectroscopies. Appl. Phys. Lett., 69 (16) (1996), 23792381.Google Scholar
[14] Jungwoo, J.; DeAlamo, J.A.: Mechanisms for electrical degradation of GaN high-electron mobility transistors, in Int. Electron Devices Meeting, San Francisco, 2006, 1–4.Google Scholar
[15] Azhar Iqbal, M.; Jones, B.K.: A Comparison of the trap properties and locations within GaAs field-effect transistors under different bias conditions. IEEE Trans. Electron Dev., 45 (8) (1998), 16631670.CrossRefGoogle Scholar