Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T03:08:34.050Z Has data issue: false hasContentIssue false

A geometry-based stochastic approach to emulate V2V communications’ main propagation channel metrics

Published online by Cambridge University Press:  15 January 2016

Jessen Narrainen*
Affiliation:
RENAULT SAS, Technocentre Renault, 78084 Guyancourt Cedex, France IETR, UMR CNRS 6164 – INSA de Rennes, 20 Av. des Buttes de Coësmes 35043 Rennes, France
Philippe Besnier
Affiliation:
IETR, UMR CNRS 6164 – INSA de Rennes, 20 Av. des Buttes de Coësmes 35043 Rennes, France
Martine Gatsinzi Ibambe
Affiliation:
RENAULT SAS, Technocentre Renault, 78084 Guyancourt Cedex, France
*
Corresponding author: J. Narrainen Email: jessen.narrainen@renault.com

Abstract

In order to evaluate a communication system, we need to model the propagation channel of the relevant environments pertaining to that communication. In this paper, we propose a Geometry-Based Stochastic Channel Modeling approach to build up propagation channel simulations to assess the performance of vehicle-to-vehicle wireless communications. Our methodology allows the simulation of dynamic scenarios, with an electromagnetic simulator, to emulate typical propagation environments (rural, highway and urban-like propagation channels). Simple metallic plates are used to represent scatterers in the simulated geometric configurations. The common characteristics defining a propagation channel such as delay spread, angle of arrival distribution, and the delay-Doppler spectrum are obtained through adjustment of the number and location of those simple metallic plates.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Maurer, J.; Fügen, T.; Schäfer, T.; Wiesbeck, W.: A new inter-vehicle communications (IVC) channel model, in Proc. IEEE 60th VTC, vol. 1, (VTC'04-Fall), 2004, 9–13.Google Scholar
[2]Abbas, T.; Nuckelt, J.; Kurner, T.; Zemen, T.; Mecklenbrauker, C.-F.; Tufvesson, F.: Simulation and measurement-based vehicle-to-vehicle channel characterization: accuracy and constraint analysis. IEEE Trans. Antennas Propag., 63 (7) (2015), 32083218.Google Scholar
[3]Acosta-Marum, G.; Ingram, M.A.: Six time- and frequency-selective empirical channel models for vehicular wireless LANs. IEEE Veh. Technol. Mag., 2 (4) (2007), 411.Google Scholar
[4]Bernado, L.; Zemen, T.; Tufvesson, F.; Molisch, A.; Mecklenbrauker, C.: Delay and Doppler spreads of non-stationary vehicular channels for safety relevant scenarios. IEEE Trans. Veh. Technol., 63 (1) (2014), 8293.Google Scholar
[5]Karedal, J. et al. : A geometry-based stochastic MIMO model for vehicle-to-vehicle communications. IEEE Trans. Wireless Commun., 8 (7) (2009), 36463657.Google Scholar
[6]Soltani, M.D.; Alimadadi, M.; Mohammadi, A.: Modeling of mobile scatterer clusters for Doppler spectrum in wideband vehicleto-vehicle communication channels. IEEE Commun. Lett., 18 (4) (2014), 628631.Google Scholar
[7]Cheng, X. et al. : An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Trans. Wireless Commun., 8 (9) (2009), 48244835.Google Scholar
[8]Zajic, A.G.; Stuber, G.L.: Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels. IEEE Trans. Wireless Commun., 8 (3) (2009), 12601275.Google Scholar
[9]Zajic, A.G.: Impact of moving scatterers on vehicle-to-vehicle narrow-band channel characteristics. IEEE Trans. Veh. Technol., 63 (8) (2014), 30943106.Google Scholar
[10]Renaudin, O.; Kolmonen, V.-M.; Vainikainen, P.; Oestges, C.: Wideband measurement-based modeling of inter-vehicle channels in the 5-GHz band. IEEE Trans. Veh. Technol., 62 (8) (2013), 35313540.Google Scholar
[11]Matolak, D.W.; Wu, Q.: Channel Models for V2V Communications: A Comparison of Different Approaches, in Proc. European Conf. on Antennas & Propagation, Rome, Italy, April 2011, 1115.Google Scholar
[12]Molisch, A.F.: Wireless Communications, 2nd ed., Wiley, 2010.Google Scholar
[13]Molisch, A. et al. : A survey on vehicle-to-vehicle propagation channels. IEEE Wireless Commun., 16 (6) (2009), 1222.Google Scholar
[14]Stoica, P.; Moses, R.L.: Spectral Analysis of Signals, 1st ed., Prentice-Hall, 2005.Google Scholar
[15]Ivan, I.; Besnier, P.; Bunlon, X.; Le Danvic, L.; Crussière, M.; Drissi, M.: Influence of propagation channel modeling on V2X physical layer performance, European Conf. on Antennas and Propagation, EuCAP 2010, Barcelona, Spain, May 2010.Google Scholar