Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T20:29:18.620Z Has data issue: false hasContentIssue false

L-band radiometer design for long-term stability measurement of one-port devices

Published online by Cambridge University Press:  14 December 2011

Emilie Leynia de la Jarrige*
Affiliation:
LAAS CNRS, 7 avenue du colonel Roche, 31077 Toulouse, Cedex, France. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
Laurent Escotte
Affiliation:
LAAS CNRS, 7 avenue du colonel Roche, 31077 Toulouse, Cedex, France. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
Eric Gonneau
Affiliation:
SIMAD, Université de Toulouse, F-31077 Toulouse, France.
Jean-Marc Goutoule
Affiliation:
EADS Astrium, 31402 Toulouse, France.
*
Corresponding author: E. Leynia de la Jarrige Email: eleyniad@laas.fr

Abstract

The design of a high-stability radiometer is presented in this paper. It is used to characterize the stability of a microwave active cold load at L-band. The two-load radiometer takes advantage of a noise injection technique to improve its sensitivity. A temperature-stabilized enclosure is used to minimize gain and noise temperature fluctuations of the receiver. The radiometer sensitivity is 0.031 K and the gain fluctuations are less than 0.005 dB during 1 day. The total gain and the receiver noise temperature of the radiometer exhibit very small variations (<0.03 dB and 1 K, respectively) on the long term.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Tiuri, M.E.: Radio astronomy receivers. IEEE Trans. Antennas Propag., 12 (1964), 930938.CrossRefGoogle Scholar
[2]Ulaby, F.T.: Passive microwave remote sensing of the earth's surface. IEEE Trans. Antennas Propag., 24 (1976), 112115.CrossRefGoogle Scholar
[3]Nanzer, J.A.; Rogers, R.L.: Human presence detection using millimeter-wave radiometry. IEEE Trans. Microw. Theory Tech., 55 (2007), 27272733.CrossRefGoogle Scholar
[4]Borgarino, M.; Polemi, A.; Mazzanti, A.: Low-cost integrated microwave radiometer front-end for industrial applications. IEEE Trans. Microw. Theory Tech., 57 (2009), 30113018.CrossRefGoogle Scholar
[5]Wiatr, W.; Schmidt-Szalowski, M.: The multistate radiometer: a novel means for impedance and noise temperature measurement. IEEE Trans. Instrum. Meas., 46 (1997), 486489.CrossRefGoogle Scholar
[6]Randa, J.; Billinger, R.L.; Rice, J.L.: On-wafer measurements of noise temperature. IEEE Trans. Instrum. Meas., 48 (1999), 12591269.CrossRefGoogle Scholar
[7]Wait, D.; Engen, G.F.: Application of radiometry to the accurate measurement of amplifier noise. IEEE Trans. Instrum. Meas., 40 (1991), 433437.CrossRefGoogle Scholar
[8]Skou, N.; Le Vine, D.: Microwave Radiometer Systems: Design and Analysis, 2nd ed., Artech House Boston/London, 2006.Google Scholar
[9]Dicke, R.H.: The measurement of thermal radiation at microwave frequencies. Rev. Sci. Instrum., 17 (1946), 268275.CrossRefGoogle ScholarPubMed
[10]Machin, K.E.; Ryle, M.; Vonberg, D.D.: The design of an equipment for measuring small radio-frequency noise powers. Proc. IEE Part III, 99 (1952), 127134.Google Scholar
[11]Ohm, E.A.; Snell, W.W.: A radiometer for a space communication receiver. Bell Syst. Tech. J., 42 (1963), 20472080.CrossRefGoogle Scholar
[12]Goggins, W.B.: A microwave feedback radiometer. IEEE Trans. Aerosp. Electron. Syst., 3 (1967), 8390.CrossRefGoogle Scholar
[13]Hach, J.P.: A very sensitive airborne microwave radiometer using two reference temperatures. IEEE Trans. Microw. Theory Tech., 9 (1968), 629636.CrossRefGoogle Scholar
[14]Goodberlet, M.A.; Mead, J.B.: Two-load radiometer precision and accuracy. IEEE Trans. Geosci. Remote Sens., 44 (2006), 5867.CrossRefGoogle Scholar
[15]Blum, E.J.: Sensibilité des radiotélescopes et récepteurs à corrélation. Ann. Astrophys., 22 (1959), 140163.Google Scholar
[16]Fujimoto, K.: On the correlation radiometer technique. IEEE Trans. Microw. Theory Tech., 12 (1964), 203212.CrossRefGoogle Scholar
[17]Aja, B. et al. : Very low-noise differential radiometer at 30 GHz for the PLANCK LFI. IEEE Trans. Microw. Theory Tech., 53 (2005), 20502062.CrossRefGoogle Scholar
[18]Frater, R.H.; Williams, D.R.: An active cold noise source. IEEE Trans. Microw. Theory Tech., 29 (1981), 344347.CrossRefGoogle Scholar
[19]Leynia de la Jarrige, E.; Escotte, L.; Goutoule, J.M.; Gonneau, E.; Rayssac, J.: SiGe HBT-based active cold load for radiometer calibration. IEEE Microw. Wirel. Compon. Lett., 20 (2010), 238240.CrossRefGoogle Scholar
[20]Leynia de la Jarrige, E.; Escotte, L.; Gonneau, E.; Goutoule, J.M.: Stability analysis of an SiGe HBT-based active cold load. IEEE Trans. Microw. Theory Tech., 59 (2011), 354359.CrossRefGoogle Scholar
[21]Wait, D.F.: Thermal noise from a passive linear multiport. IEEE Trans. Microw. Theory Tech., 16 (1968), 687691.CrossRefGoogle Scholar
[22]Kemppainen, S. et al. : Thermal stabilized front-end PCB with active cold calibration load for L-band radiometer, in IEEE Int. Geoscience and Remote Sensing Symp., Barcelona, 2007, 44334436.Google Scholar
[23]Lemaître, F. et al. : Design and test of the ground-based L-band radiometer for estimating water in soils (LEWIS). IEEE Trans. Geosci. Remote Sens., 42 (2004), 16661676.CrossRefGoogle Scholar
[24]Tanner, A.B.: A high stability Ka-band radiometer for tropospheric water vapor measurements, in IEEE Aerospace Conf., Big Sky, Montana, 2001, 18491863.Google Scholar
[25]Sobjaerg, S.S.; Skou, N.; Balling, J.E.: Measurements on active cold loads for radiometer calibration. IEEE Trans. Geosci. Remote Sens., 47 (2009), 31343139.CrossRefGoogle Scholar
[26]Barillet, R.; Viennet, J.; Petit, P.; Audoin, C.: Circuit for temperature control. J. Phys. E: Sci. Instrum., 8 (1975), 544545.CrossRefGoogle Scholar
[27]Allan, D.W.: Statistics of atomic frequency standards. Proc. IEEE, 54 (1966), 221230.CrossRefGoogle Scholar
[28]Rau, G.; Schieder, R.; Vowinkel, B.: Characterization and measurement of radiometer stability, in 14th European Microwave Conf., Liège, 1984, 248253.CrossRefGoogle Scholar
[29]Rutman, J.: Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. Proc. IEEE, 66 (1978), 10481075.CrossRefGoogle Scholar
[30]Wollack, E.J.; Pospieszalski, M.W.: Characteristics of broadband InP millimeter-wave amplifiers for radiometry, in IEEE MTT-S Int. Microwave Symp. Digest, Baltimore, 1998, 669672.Google Scholar
[31]Leynia de la Jarrige, E.; Escotte, L.; Gonneau, E.; Goutoule, J.M.: Long-term stability of an SiGe HBT-based active cold load, in IEEE Int. Geoscience And Remote Sensing Symp., Vancouver, 2011, 38393842.CrossRefGoogle Scholar