Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T03:19:24.405Z Has data issue: false hasContentIssue false

Membrane antenna array based on substrate integrated waveguide technology for 94 GHz communication systems

Published online by Cambridge University Press:  10 March 2015

Hamsakutty Vettikalladi*
Affiliation:
Department of Electrical Engineering, King Saud University, P.O. Box, 800, Riyadh 11421, Saudi Arabia. Phone: +96614676805
Muhammad Kamran Saleem
Affiliation:
Department of Electrical Engineering, King Saud University, P.O. Box, 800, Riyadh 11421, Saudi Arabia. Phone: +96614676805
Majeed A.S. Alkanhal
Affiliation:
Department of Electrical Engineering, King Saud University, P.O. Box, 800, Riyadh 11421, Saudi Arabia. Phone: +96614676805
*
Corresponding author: H. Vettikalladi Email: hvettikalladi@ksu.edu.sa

Abstract

The design and the results of a single slot coupled substrate integrated waveguide (SIW)-fed membrane antenna and a 1 × 4 array is presented for 94 GHz communication system. The membrane antenna is designed using Ansys high frequency structure simulator and consists of six layers. The microstrip patch antenna placed on the top pyralux substrate layer is excited by means of a longitudinal rectangular slot placed over the SIW structure in the bottom pyralux substrate. The simulated antenna impedance bandwidth is found to be 5 GHz (91.5–96.5 GHz) for both single element and 1 × 4 array. Furthermore, the gain is found to be 7 and 13 dBi for the single element and the 1 × 4 array elements, respectively. The results are verified using Computer Simulation Technology (CST) Microwave Studio and are found to be in good agreement.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Roseblum, E.S.: Atmosphere absorption of 10-400 KMQS radiation: summary and biography up to 1961. Microw. J., 4 (1961), 9196.Google Scholar
[2]Wu, K.; Cheng, Y.J.; Djerafi, T.; Hong, W.: Substrate-integrated millimeter-wave and terahertz antenna technology, invited paper. Proc. IEEE, 100 (2012), 22192232.Google Scholar
[3]Hirokawa, J.; Ando, M.: Single layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Trans. Antennas Propag., 46 (1998), 625630.Google Scholar
[4]Deslandes, D.: Wu, K.: Single substrate integration technique of planar circuits and waveguide filters. IEEE Trans. Microw. Theory Tech., 51 (2003), 595596.Google Scholar
[5]Deslandes, D.; Wu, K.: Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Trans. Microw. Theory Tech., 54 (2006), 25162526.CrossRefGoogle Scholar
[6]Wu, K.; Deslandes, D.; Cassivi, Y.: The substrate integrated circuits – a new concept for high frequency electronics and optoelectronics, in Proc. 6th Int. Conf. Telecommun. Modern Satellite Cable Broadcast Service, 1, 2003, 35.CrossRefGoogle Scholar
[7]Bozzi, M.; Georgiadis, A.; Wu, K.: Review of substrate integrated waveguide circuits and antennas. IET Microw. Antenna Propag., 5 (2011), 909920.CrossRefGoogle Scholar
[8]Yan, L.; Hong, W.; Hua, G.; Chen, J.; Wu, K.; Cui, T.J.: Simulation and experiment on SIW slot array antennas. IEEE Microw. Wirless Compon. Lett., 14 (2004), 446448.Google Scholar
[9]Hong, W. et al. : Integratged microwave and millimeter wave antennas based on SIW and HMSIW technology. in Proc. IEEE Int. Workshop Antenna Tech. Small Smart Antennas Metamaters. and Applicat., (iWat), (2007), 6972.Google Scholar
[10]Nakano, H.; Suga, R.; Hirachi, Y.; Hirokawa, J.; Ando, M.: 60 GHz post wall waveguide aperture antenna with directors made by multilayer PCB process, in Proc. EuCAP, Italy, 2011.Google Scholar
[11]Stephens, D.; Young, P.R.; Robertson, I.D.: W band substrate integrated waveguide slot antenna. Electron. Lett., 41 (2005), 165167.Google Scholar
[12]Abdel-Wahab, W.M.; Safavi-Naeini, S.: Wide-bandwidth 60-GHz aperture-coupled microstrip patch antennas (MPAs) fed by substrate integrated waveguide (SIW). IEEE Antennas Wirel. Propag. Lett., 10 (2011), 10031005.Google Scholar
[13]Sourav, M.; Asish, K.M.; Anup, K. B.: Ku-band substrate integrated waveguide (SIW) slot array antenna for next generation networks. Glob. J. Comput. Sci. Technol. Netw. Web Secur., 13 (2013), 1015.Google Scholar
[14]Cassivi, Y.; Perregrini, L.; Arcioni, P.; Bressan, M.; Wu, K.; Conciauro, G.: Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microw. Wirel. Compon. Lett., 12 (2002), 333335.Google Scholar
[15]Wu, K.; Deslandes, D.; Cassivi, Y.: The substrate integrated circuits – a new concept for high-frequency electronics and optoelectronics, in 6th Int. Conf. on Telecommunications in Modern Satellites, Cable and Broadcasting Serviecs, October 2003.CrossRefGoogle Scholar
[16]Vettikalladi, H.; Saleem, M.K.; Alkanhal, M.A.S.: Millimeter wave antenna based on substrate integrated waveguide for 94 GHz communication systems, iWAT, Sydney, Australia, 2013.CrossRefGoogle Scholar