Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T09:06:19.478Z Has data issue: false hasContentIssue false

Perturbation theory-based field analysis of arbitrary-shaped microstrip patch antenna

Published online by Cambridge University Press:  19 April 2017

Karishma Sharma*
Affiliation:
Division of Electronics and Communication Engineering, Netaji Subhas Institute of Technology, Delhi University, Delhi, India. Phone: +91 9818 021 456
Dharmendra K. Upadhyay
Affiliation:
Division of Electronics and Communication Engineering, Netaji Subhas Institute of Technology, Delhi University, Delhi, India. Phone: +91 9818 021 456
Harish Parthasarathy
Affiliation:
Division of Electronics and Communication Engineering, Netaji Subhas Institute of Technology, Delhi University, Delhi, India. Phone: +91 9818 021 456
*
Corresponding author: K. Sharma Email: krrissh_16@yahoo.co.in

Abstract

In this paper, the concept of perturbation theory is applied to derive a general electric field (E-field) expression for any arbitrary-shaped microstrip patch antenna. The arbitrary shape is created by adding small perturbation in a regular patch shape, which is used to find perturbed and unperturbed electromagnetic wave solutions for resultant E-field of patch antenna. Ansoft HFSS simulator is used to validate the derived field expression in curvilinear coordinates for a regular circular-shaped patch. Then the proposed field analysis is applied to develop two new arbitrary-shaped patches in C-band for desired E-field patterns.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Balanis, C.A.: Antenna Theory – Analysis and Design, J. Wiley & Sons Inc., New York, 1997.Google Scholar
[2] Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A.: Microstrip Antenna Design Handbook, Artech House, London, 2001.Google Scholar
[3] Carver, K.R.; Mink, J.W.: Microstrip antenna technology. IEEE Trans. Antennas Propag., 29 (1981), 224.CrossRefGoogle Scholar
[4] Singla, G.; Khanna, R.: Modified CPW-fed rotated E-slot antenna for LTE/WiMAX applications. Int. J. Microw. Wireless Tech., 7 (2015), 535542.Google Scholar
[5] Tinoco, A.F.; Nascimento, D.C.; Schildberg, R.; Lacava, J.C.Da.S.: Analysis and design of rectangular microstrip antennas for educational purposes. IEEE Antennas Propag. Mag., 53 (2011), 151155.Google Scholar
[6] Peixeiro, C.: Microstrip antenna papers in the IEEE transactions on antennas and propagation. IEEE Antennas Propag. Mag., 54 (2012), 264268.Google Scholar
[7] James, J.R.; Hall, P.S.: Handbook of Microstrip Antennas, Peter Peregrinus Ltd., London, 1989.Google Scholar
[8] Schejbal, V.; Novak, J.; Gregora, S.: Comparison of CAD for rectangular microstrip antennas. Radioengineering, 12 (2003), 1215.Google Scholar
[9] Madenci, E.; Guven, I.: The Finite Element Method and Applications in Engineering Using ANSYS® , Springer, New York, 2015.CrossRefGoogle Scholar
[10] Islam, M.T.: Broadband E-H shaped microstrip patch antenna for wireless systems. Prog. Electromagn. Res., 98 (2009), 163173.Google Scholar
[11] Sharma, K.; Upadhyay, D.K.; Parthasarathy, H.: Modified circular-shaped microstrip patch antenna, in IEEE Int. Conf. on Computational Intelligence & Communication Technology, Ghaziabad (India), 2015, 397399.Google Scholar
[12] Ang, B.K.; Chung, B.K.: A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications. Prog. Electromagn. Res., 79 (2007), 397407.Google Scholar
[13] Moradikordalivand, A.; Rahman, T.A.: Broadband modified rectangular micro-strip patch antenna using stepped cut at four corners method. Prog. Electromagn. Res., 137 (2013), 599619.CrossRefGoogle Scholar
[14] Le, T.T.; Park, H.C.: Very simple circularly polarised printed patch antenna with enhanced bandwidth. Electron. Lett., 50 (2014), 18961898.Google Scholar
[15] Ghosh, A.; Ghosh, S.K.; Ghosh, D.; Chattopadhyay, S.: Improved polarization purity for circular microstrip antenna with defected patch surface. Int. J. Microwave Wireless Tech., 8 (2016), 8994.Google Scholar
[16] Noghabaei, S.M.; Rahim, S.K.A.; Soh, P.J.; Vandenbosch, G.A.E.: A dual-band circularly-polarized patch antenna with a novel asymmetric slot for WiMAX application. Radioengineering, 22 (2013), 291295.Google Scholar
[17] Gautam, A.K.; Kunwar, A.; Kanaujia, B.K.: Circularly polarized arrowhead-shaped slotted microstrip antenna. IEEE Antennas Wireless Propag. Lett., 13 (2014), 471474.Google Scholar
[18] Sharma, V.; Sharma, M.M.: Dual band circularly polarized modified rectangular patch antenna for wireless communication. Radioengineering, 23 (2014), 195202.Google Scholar
[19] Khan, M.U.; Sharawi, M.S.; Mittra, R.: Microstrip patch antenna miniaturisation techniques: a review. IET Microw. Antennas Propag., 9 (2015), 913922.Google Scholar
[20] Farswan, A.; Gautam, A.K.; Kanaujia, B.K.; Rambabu, K.: Design of Koch fractal circularly polarized antenna for handheld UHF RFID reader applications. IEEE Trans. Antennas Propag., 64 (2016), 771775.Google Scholar
[21] Ansoft Corp.: Parametrics and optimization using Ansoft HFSS. Microw. J. – Euro. Glob. Ed., 42 (1999), 156167.Google Scholar
[22] Martinez-Fernandez, J.; Gil, J.M.; Zapata, J.: Ultrawideband optimized profile monopole antenna by means of simulated annealing algorithm and the finite element method. IEEE Trans. Antennas Propag., 55 (2007), 18261832.Google Scholar
[23] Tseng, L.-Y.; Han, T.-Y.: An evolutionary design method using genetic local search algorithm to obtain broad/dual-band characteristics for circular polarization slot antennas. IEEE Trans. Antennas Propag., 58 (2010), 14491456.Google Scholar
[24] Palanisamy, V.; Garg, R.: Analysis of arbitrarily shaped microstrip patch antennas using segmentation technique and cavity model. IEEE Trans. Antennas Propag., 34 (1986), 12081213.Google Scholar
[25] Mosig, J.R.: Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation. IEEE Trans. Microw. Theory Tech., 36 (1988), 314323.Google Scholar
[26] Michalski, K.A.; Zheng, D.: Analysis of microstrip resonators of arbitrary shape. IEEE Trans. Microw. Theory Tech., 40 (1992), 112119.Google Scholar
[27] Qinjiang, R.: Resonant frequencies of arbitrary shaped microstrip patch antennas, in Antennas and Propagation Society Int. Symp., Chicago, USA, 1992, 17451748.Google Scholar
[28] Yang, X.H.; Shafai, L.: Nodal-based basis function for full wave analysis of microstrip antennas with arbitrary geometries. Electron. Lett., 30 (1994), 830831.Google Scholar
[29] Omar, A.A.; Chow, Y.L.; Stubbs, M.G.: Contour integral method with fringe complex images for the rapid solution of patch resonators of arbitrary shape. IEEE Trans. Microw. Theory Tech., 43 (1995), 20282034.Google Scholar
[30] Okoshi, T.: Planar Circuits for Microwaves and Lightwaves, Springer Series in Electronics and Photonics, New York, 1985.Google Scholar
[31] Sun, Y.; Chow, Y.L.; Fang, D.G.: Irregularly shaped patch as perturbation of regularly shaped patch, in Antennas and Propagation Society Int. Symp., Boston, USA, vol. 1, 2001, 502505.Google Scholar
[32] Tiang, J.J.; Islam, M.T.; Misran, N.; Mandeep, J.S.: Circular microstrip slot antenna for dual-frequency RFID application. Prog. Electromagn. Res., 120 (2011), 499512.Google Scholar
[33] Bilotti, F.; AlՙU, A.; Manzini, M.: Design of polygonal patch antennas with a broad-band behavior via a proper perturbation of conventional rectangular radiators, in Antennas and Propagation Society Int. Symp., Columbus, USA, vol. 2, 2003, 268271.Google Scholar
[34] Manzini, M.; Andrea, A.; Bilotti, F.; Vegni, L.: Polygonal patch antennas for wireless communications. IEEE Trans. Veh. Tech., 53 (2004), 14341440.Google Scholar
[35] Bilotti, F.; AlՙU, A.; Vegni, L.: Electromagnetic field solution in conformal structures: theoretical and numerical analysis. Prog. Electromagn. Res., 47 (2004), 125.Google Scholar
[36] Sarder, J.E.: Analysis of arbitrary profiles by implementation of integral equation eigenvalue analysis. IEEE J. Quantum Electron., 26 (1990), 20132024.Google Scholar
[37] Sarder, J.E.: Integral equation analysis for higher order modes and cutoff frequencies of arbitrary profiles. IEEE J. Quantum Electron., 27 (1991), 976984.Google Scholar
[38] Pozar, D.M.: Microwave Engineering, J. Wiley & Sons Inc., USA, 2005.Google Scholar
[39] Balanis, C.A.: Advanced Engineering Electromagnetics, J. Wiley & Sons Inc., USA, 1989.Google Scholar
[40]Ansys Ansoft HFSS simulator version 14.0, Ansys Corp., Canonsburg, PA, USA.Google Scholar