Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T16:59:16.841Z Has data issue: false hasContentIssue false

Piezoelectric materials parameters for piezoelectric thin films in GHz applications

Published online by Cambridge University Press:  15 May 2009

P. Muralt*
Affiliation:
Ceramics Laboratory, Ecole Polytechnique Federale de Lausanne EPFL, Lausanne, Switzerland
J. Conde
Affiliation:
Ceramics Laboratory, Ecole Polytechnique Federale de Lausanne EPFL, Lausanne, Switzerland
A. Artieda
Affiliation:
Ceramics Laboratory, Ecole Polytechnique Federale de Lausanne EPFL, Lausanne, Switzerland
F. Martin
Affiliation:
Ceramics Laboratory, Ecole Polytechnique Federale de Lausanne EPFL, Lausanne, Switzerland
M. Cantoni
Affiliation:
Electron Microscopy Center, Ecole Polytechnique Federale de Lausanne EPFL, Switzerland.
*
Corresponding author: P. Muralt E-mail: paul.muralt@epfl.ch

Abstract

Piezoelectric thin films have existing and promising new applications in microwave filter technologies. The final performance depends on many parameters, and very specifically on the materials properties of each involved material. In this article, materials and properties for thin-film bulk acoustic wave resonators are discussed on some selected issues: the piezoelectric coefficients and acoustic losses of AlN, the relation of the first one with microstructural parameters, the inclusion of parasitic elements, and the merits of and problems with ferroelectric materials.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Hickernell, F.S.: ZnO processing for bulk- and surface wave devices, in IEEE Ultrasonics Symp., IEEE, Boston, MA, 1980, 785794.CrossRefGoogle Scholar
[2]Khuri-Yakub, B.T.; Kino, G.S.; Galle, P.: Studies of the optimum conditions for growth of rf-sputtered ZnO films. J. Appl. Phys., 46 (1975), 24642470.CrossRefGoogle Scholar
[3]Yamamoto, T.; Shiosaki, T.; Kawabata, A.: Characterization of ZnO piezoelectric films prepared by rf planar magnetron sputtering. J. Appl. Phys., 51 (1980), 31133120.CrossRefGoogle Scholar
[4]Shiosaki, T.; Ohnishi, S.; Kirokawa, Y.; Kawabata, A.: As grown CVD ZnO optical waveguides on sapphire. Appl. Phys. Lett., 33 (1978), 406407.CrossRefGoogle Scholar
[5]Grudkowski, T.W.; Black, J.F.; Reeder, T.M.; Cullen, D.E.; Wagner, R.A.: Fundamental-mode VHF-UHF miniature acoustic resonators and filters on silicon. Appl. Phys. Lett., 37 (1980), 993995.CrossRefGoogle Scholar
[6]Lakin, K.M.; Wang, J.S.: UHF composite bulk acoustic wave resonators, in IEEE Ultrasonics Symp., IEEE, Boston, 1980, 834837.CrossRefGoogle Scholar
[7]Nakamura, K.; Sasaki, H.; Shimizu, H.: ZnO/SiO2-diaphragm composite resonator on a silicon wafer. Electron. Lett., 17 (1981), 507509.CrossRefGoogle Scholar
[8]Lakin, K.M.; Kline, G.R.; McCarron, K.T.: Thin film bulk acoustic wave filter for GPS, in IEEE Ultrasonics Symp., IEEE, 1992, 471476.Google Scholar
[9]Lakin, K.M.; McCarron, K.T.; Rose, R.E.: Solidly mounted resonators and filters, in IEEE Ultrasonics Symp., IEEE, Seattle, 1995, 905908.Google Scholar
[10]Ruby, R.C.; Bradley, P.; Oshmyansky, Y.; Chien, A.; Larson, J.D.: Thin film bulk acoustic wave resonators for wireless applications, in IEEE Ultrasonics Symp., IEEE, Atlanta, 2001, 813821.Google Scholar
[11]Aigner, R.; Kaitila, J.; Ellia, J.; Elbrecht, L.; Nessler, W.; Handmann, M.; Herzog, T.; Marksteiner, S.: Bulk-acoustic wave filters: performance optimization and volume manufacturing, in IMS’ 2003, Philadelphia.Google Scholar
[12]Heinze, H.; Schmidhammer, E.; Diekmann, C.; Metzger, T.: 3.8 × 3.8 mm2 PCS-CDMA duplex incorporating thin film resonator technology, in IEEE Ultrasonics Symp., Montreal, 2004.Google Scholar
[13]Cushman, D.; Lau, K.F.; Garber, E.M.; Mai, K.A.; Oki, A.K.; Kobayashi, K.W.: SBAR filter monlithically integrated with HBT amplifier, in IEEE Ultrasonics, IEEE, Honolulu, USA, 1990, 519523.Google Scholar
[14]Dubois, M.-A.; Carpentier, J.-F.; Vincent, P.; Billard, C.; Parat, G.; Muller, C.; Ancey, P.; Conti, P.: Monolithic above-IC resonators technology for integrated architectures in mobile and wireless communication. IEEE J. Solid-State Circuits, 41 (2006), 716.CrossRefGoogle Scholar
[15]Ikeda, T.: Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990.Google Scholar
[16]Masson, J.; Martin, G.; Boudot, S.; Gruson, Y.; Ballendras, S.; Artieda, A.; Muralt, P.; Belgacem, B.; Chomemeloux, L.: Fabrication of high stability oscillators using AlN/Si high overtone bulk acoustic resonators, in IEEE Ultrasonics Symp., IEEEE, New York, 2007, 628631.CrossRefGoogle Scholar
[17]Artieda, A.; Muralt, P.: High-Q AlN/SiO2 symmetric composite thin film bulk acoustic wave resonators. IEEE Trans. UFFC., 55 (2008), 24632468.CrossRefGoogle ScholarPubMed
[18]Ballato, A.; Gualtieri, J.G.: Advances in high-Q piezoelectric resonator materials and devices. IEEE Trans. UFFC., 41 (1994), 834844.CrossRefGoogle ScholarPubMed
[19]Gualtieri, J.G.; Kosinski, J.A.; Ballato, A.: Piezoelectric materials for acoustic wave applications. IEEE Trans. UFFC., 41 (1994), 5359.CrossRefGoogle Scholar
[20]Bu, G.; Ciplys, D.; Shur, M.; Schowalter, L.J.; Schujman, S.; Gaska, R.: Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride. Appl. Phys. Lett., 84 (2004), 46114613.CrossRefGoogle Scholar
[21]Tsubouchi, K.; Mikoshiba, N.: Zero-temperature coefficient SAW devices on AlN epitaxial films. IEEE Trans. Sonics Ultrason., SU-32 (1985), 634644.CrossRefGoogle Scholar
[22]Martin, F.; Muralt, P.; Dubois, M.-A.; Pezous, A.: Thickness dependence of properties of highly c-axis textured AlN thin films. J. Vac. Sci. Technol. A., 22 (2004), 361365.CrossRefGoogle Scholar
[23]Kamiya, T.: Calculation of crystal structures, dielectric constants and piezoelectric properties of Wurtzite-type crystals using ab-intio periodic Hartree–Fock method. Jpn. J. Appl. Phys., 41 (1996), 44214426.CrossRefGoogle Scholar
[24]Löbl, H.P.; Klee, M.; Metzmacher, C.; Brand, W.; Milsom, R.; Lok, P.: Piezoelectric thin AlN films for bulk acoustic wave resonators. Mater. Chem. Phys., 79 (2003), 143146.CrossRefGoogle Scholar
[25]Tsubouchi, K.; Sugai, K.; Mikoshiba, N.: AlN material constants evaluation and SAW properties of AlN/Al2O3 and AlN/Si, in IEEE Ultrasonics Symp., 1981, 375380.Google Scholar
[26]Tornare, G.; Calame, F.; Muralt, P.: unpublished.Google Scholar
[27]Dubois, M.-A.; Muralt, P.: Stress and piezoelectric properties of AlN thin films deposited onto metal electrodes by pulsed direct current reactive sputtering. J. Appl. Phys., 89 (2001), 63896395.CrossRefGoogle Scholar
[28]Takikawa, H.; Kuimura, K.; Miyano, R.; Sakakibara, T.; Bendavid, A.; Martin, P.J.; Matsumuro, A.; Tsutsumi, K.: Effect of substrate bias on AlN thin film preparation in shielded reactive vacuum arc deposition. Thin Solid Films, 386 (2001), 276280.CrossRefGoogle Scholar
[29]Drusedau, T.P.; Blasing, J.: Optical and structural properties of highly c-axis oriented nitride prepared by sputter deposition in pure nitride. Thin Solid Films, 377 (2000), 2731.CrossRefGoogle Scholar
[30]Gardeniers, J.G.E.; Rittersma, Z.M.; Burger, G.J.: Preferred orientation and piezoelectricity in sputtered ZnO films. J. Appl. Phys., 83 (1998), 78447854.CrossRefGoogle Scholar
[31]Bjurstrom, J.; Rosen, D.; Katardjiev, I.; Yanchev, V.M.; Petrov, I.: Dependence of the electromechanical coupling on the degree of orientation of c-texture thin AlN films. IEEE Trans. UFFC., 51 (2004), 13471353.CrossRefGoogle Scholar
[32]Link, M.; Schreiter, M.; Weber, J.; Gabl, R.; Pitzer, D.; Primig, R.; Wersing, W.; Assouar, M.B.; Elmazria, O.: C-axis inclined ZnO films for shear-wave transducers deposited by reactive sputtering using an additional blind. J. Vac. Sci. Technol. A., 24 (2006), 218222.CrossRefGoogle Scholar
[33]Bjurstrom, J.; Wingqvist, G.; Katardjiev, I.: Synthesis of textured thin film piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators. IEEE Trans. UFFC., 53 (2006), 20952100.CrossRefGoogle ScholarPubMed
[34]Warren, B.E.: X-ray Diffraction, Addison-Wesley, Reading, MA, 1969.Google Scholar
[35]Vogg, G.; Miskys, C.R.; Garrido, J.A.; Herman, M.; Eickhoff, M.; Stutzmann, M.: High quality heteroepitaxial AlN films on diamond. J. Appl. Phys., 96 (2004), 895902.CrossRefGoogle Scholar
[36]Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Dimos, D.; Gonzales, D.M.: Effect of substrate composition on the piezoelectric response of reactively sputtered AlN thin films. Thin Solid Films, 354 (1999), 256261.CrossRefGoogle Scholar
[37]Lakin, K.M.; Kline, G.R.; McCarron, K.T.: High-Q microwave acoustic resonators and filters. IEEE Trans. Microwave Theory Tech., 41 (1993), 21392146.CrossRefGoogle Scholar
[38]Martin, J.J.: Acoustic loss in cultured quartz, in IEEE International Frequency Control Symp., 1996, 170178.Google Scholar
[39]Schreiter, M.; Gabl, R.; Pitzer, D.; Wersing, W.: Electro-acoustic hysteresis behavior of PZT thin film bulk acoustic resonators. J. Eur. Cer. Soc., 24 (2004), 15891592.CrossRefGoogle Scholar
[40]Gevorgian, S.; Vorobiev, A.; Lewin, T.: DC field and temperature dependent acoustic resonances in parallel-plate capacitors based in SrTiO3 and (Ba,Sr)TiO3 films: experiment and modelling. J. Appl. Phys., 99 (2006), 124112.CrossRefGoogle Scholar
[41]Löbl, H.P.; Klee, M.; Milsom, R.; Dekker, R.; Metzmacher, C.; Brand, W.; Lok, P.: Materials for bulk acoustic wave (BAW) resonators and filters. J. Eur. Cer. Soc., 21 (2001), 26332640.CrossRefGoogle Scholar
[42]Larson, J.D.; Gilbert, S.R.; Xu, B.: PZT material properties at UHF and microwave frequencies derived from FBAR measurements, in IEEE Ultrasonics Symp., Montreal, 2004.Google Scholar
[43]Su, Q.X.; Kirby, P.; Komuro, E.; Imura, M.; Zhang, H.; Whatmore, R.W.: Thin film bulk acoustic resonators and filters using ZnO and PZT thin films. IEEE Trans., MTT 49 (2001), 769777.Google Scholar
[44]Conde, J.; Muralt, P.: Characterization of sol–gel PZT thin film bulk acoustic resonators. IEEE Trans. UFFC., 55 (2008), 13731379.CrossRefGoogle ScholarPubMed
[45]Roitburd, A.L.: Equilibrium structure of epitaxial layers. Phys. Status Solidi (a), 37 (1976), 329339.CrossRefGoogle Scholar
[46]Roytburd, A.L.: Thermodynamics of polydomain heterostructures. I. Effect of macrostresses. J. Appl. Phys., 83 (1998), 228238.CrossRefGoogle Scholar
[47]Speck, J.S.; Pompe, W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric films I. Theory. J. Appl. Phys., 76 (1994), 466476.CrossRefGoogle Scholar
[48]Pertsev, N.A.; Zembilgotov, A.G.; Tagantsev, A.K.: Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett., 80 (1998), 19881991.CrossRefGoogle Scholar
[49]Zhang, Q.M.; Wang, H.; Kim, N.; Cross, L.E.: Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate–titanate ceramics. J. Appl. Phys., 75 (1994), 454459.CrossRefGoogle Scholar
[50]Arlt, G.: Strong ultrasonic microwaves in ferroelectric ceramics. IEEE Trans. UFFC., 45 (1998), 410.CrossRefGoogle ScholarPubMed
[51]Arlt, G.; Böttger, U.; Witte, S.: Emission of GHz shear waves by ferroelastic domain walls in ferroelectrics. Appl. Phys. Lett., 63 (1993), 602604.CrossRefGoogle Scholar
[52]Noeth, A.; Yamada, T.; Sherman, V.O.; Muralt, P.; Tagantsev, A.; Setter, N.: DC Bias-dependent shift of the resonance frequencies in BST thin film membranes. IEEE Trans. UFFC., 54 (2007), 24882492.CrossRefGoogle ScholarPubMed
[53]Volatier, A.; Defay, E.; Aid, M.: Switchable and tunable strontium electrostrictive bulk acoustic wave resonator integrated with a Bragg mirror. Appl. Phys. Lett., 92 (2008), no. 032906.CrossRefGoogle Scholar