Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T16:54:34.708Z Has data issue: false hasContentIssue false

New Noninvasive Techniques for Assessing Brain Oxygenation and Hemodynamics

Published online by Cambridge University Press:  10 March 2009

E. Osmund R. Reynolds
Affiliation:
University College and Middlesex School of Medicine, London

Extract

Infants who require intensive care are at considerable risk of death or long-term neurodevelopmental disability. Therefore, noninvasive methods have been sought for assessing the structure and function of the brain in the immediate newborn period. The major aims are to investigate the prevalence and mechanisms of brain-damaging lesions, to test preventive strategies and treatment, and to assign the prognosis of the infants. Several methods have proved their worth, e.g., ultrasound imaging, electroencephalography, including the testing of evoked potentials, and Doppler ultrasonography for measuring flow velocity in intracerebral vessels.

Type
Methods in Follow-Up Studies after Neonatal Intensive Care
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aldridge, R., Cady, E. B., Cope, M. C., Delpy, D. T., Reynolds, E. O. R., Richardson, C. E., Wray, S., & Wyatt, J. S.Simultaneous measurements of cerebral oxygenation and metabolites by near infrared (NIR) and 3 IP nuclear magnetic resonance (NMR) spectroscopy during hypoxia in rats. The Journal of Physiology, 1988, 396, 96P.Google Scholar
2.Behar, K. L., den Hollander, J. A., Stromski, M. E., Ogino, T., Shulman, R. G., Petroff, O. A., & Prichard, J. W.High resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proceedings of the National Academy of Science, 1983, 80, 4945–48.CrossRefGoogle ScholarPubMed
3.Brazy, J. E., Lewis, D. V., Mitnick, M. H., & Jobsis Van Der Vliet, . Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations. Pediatrics, 1985, 75, 217–25.CrossRefGoogle ScholarPubMed
4.Cady, E. B., Costello, A. M. deL., Dawson, M. J., Delpy, D. T., Hope, P. L., Reynolds, E. O., Tofts, P. S., & Wilkie, D. R.Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet, 1983, 1, 1059–62.CrossRefGoogle ScholarPubMed
5.Cady, E. B., Chu, A., Costello, A. M. deL., Delpy, D. T., Gardiner, R. M., & Hope, P. L.Brain intracellular pH and metabolism during hypercapnia and hypocapnia in the new-born lamb. Journal of Physiology, 1987, 382, 114.CrossRefGoogle ScholarPubMed
6.Chance, B., Leigh, J. S., Nioka, S., Sinwell, T., Younkin, D., & Smith, D. S.An approach to the problem of metabolic heterogeneity in brain. Annals of the New York Academy of Sciences, 1987, 580, 309–19.CrossRefGoogle Scholar
7.Cope, M., & Delpy, D. T.A system for long term measurement of cerebral blood and tissue oxygenation in newborn infants. Medical and Biological Engineering and Computing, 1988, 26, 289–94.CrossRefGoogle ScholarPubMed
8.Delpy, D. T., Cope, M. C., Cady, E. B., et al. Cerebral monitoring in newborn infants by magnetic resonance and near infrared spectroscopy. Scandinavian Journal of Clinical and Laboratory Investigation, 1987, 47 (suppl. 188), 917.CrossRefGoogle Scholar
9.Gadian, D. G.Nuclear magnetic resonance and its application to living systems. Oxford: Clarendon Press, 1982.Google Scholar
10.Hamilton, P. A., Hope, P. L., Cady, E. B., Delpy, D. T., Wyatt, J. S., & Reynolds, E. O. R.Impaired energy metabolism in brains of newborn infants with increased cerebral echodensities. Lancet, 1986, i, 1242–46.CrossRefGoogle Scholar
11.Hope, P. L., Costello, A. M. deL., Cady, E. B., Delpy, D. T., Tofts, P. S., Chu, A., Hamilton, P. A., Reynolds, E. O. R., & Wilkie, D. R.Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet, 1984, ii, 366–70.CrossRefGoogle Scholar
12.Hope, P. L., & Reynolds, E. O. R.Investigation of cerebral energy metabolism in newborn infants by phosphorus magnetic resonance spectroscopy. Clinics in Perinatology, 1985, 12, 261–75.CrossRefGoogle Scholar
13.Hope, P. L., Cady, E. B., Chu, A., Delpy, D. T., Gardiner, R. M., & Reynolds, E. O. R.Brain metabolism and intracellular pH during ischaemia and hypoxia. An in vivo 31P and 1H nuclear magnetic resonance study in the lamb. Journal of Neurochemistry, 1987, 49, 7582.CrossRefGoogle Scholar
14.Hope, P. L., Cady, E. B., Delpy, D. T., Ives, N. K., Gardiner, R. M., & Reynolds, E. O. R.Brain metabolism and intracellular pH during ischaemia: The effects of systemic glucose and bicarbonate administration studied by 31P and 1H nuclear magnetic resonance in vivo in the lamb. Journal of Neuro-chemistry, 1988, 50, 1394–402.CrossRefGoogle ScholarPubMed
15.Jobsis, F. F.Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977, 198, 1264–67.CrossRefGoogle ScholarPubMed
16.Lawson, B., Anday, E., Guillet, R., Wagerle, L. C., Chance, B., & Delivoria-Papdopolous, M.Brain oxidative phosphorylation following alteration in head position in preterm and term infants. Pediatric Research, 1987, 22, 302–05.CrossRefGoogle Scholar
17.Petroff, O. A. C., Prichard, J. W., Behar, K. L., Alger, J. R., den Hollander, J. A., & Shulman, R. G.Cerebral intracellular pH by 31P magnetic resonance spectroscopy. Neurology, 1985, 35, 781–88.CrossRefGoogle ScholarPubMed
18.Tofts, P. S., & Wray, S.Changes in brain phosphorus metabolites during the postnatal development of the rat. Journal of Physiology, 1985, 359, 417–29.CrossRefGoogle ScholarPubMed
19.Wray, S., & Tofts, P. S.Direct in vivo measurement of absolute metabolite concentration using 31P nuclear magnetic resonance spectroscopy. Biochemica et Biophysica Acta, 1986, 886, 399405.CrossRefGoogle ScholarPubMed
20.Wray, S., Cope, M., Delpy, D. T., Wyatt, J. S., & Reynolds, E. O. R.Characterization of near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochemica et Biophysica Acta, 1988, 133, 184–92.CrossRefGoogle Scholar
21.Wyatt, J. S., Cope, M., Delpy, D. T., Wray, S., & Reynolds, E. O. R.Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry. Lancet, 1986, ii, 1063–66.CrossRefGoogle Scholar
22.Younkin, D. P., Delivoria-Papdopolous, M., Leonard, J. C., Subramanian, V. H., Eleff, S., Leigh, J. S. Jr., & Chance, B.Unique aspects of human newborn cerebral metabolism evaluated with phosphorus nuclear magnetic resonance spectroscopy. Annals of Neurology, 1984, 16, 581–86.CrossRefGoogle ScholarPubMed