Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T05:46:00.375Z Has data issue: false hasContentIssue false

Lipophorin of the larval stalk borer, Busseola Fusca: Purification and properties

Published online by Cambridge University Press:  19 September 2011

Dorington O. Ogoyi
Affiliation:
The International Centre of Insect Physiology and Ecology P. O. Box 30772, Nairobi, Kenya
Ellie O. Osir*
Affiliation:
The International Centre of Insect Physiology and Ecology P. O. Box 30772, Nairobi, Kenya
James O. Ochanda
Affiliation:
Department of Biochemistry, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
*
* To whom correspondence should be addressed
Get access

Abstract

Lipophorin was isolated from the stalk borer, Busseolafusca, larvae by ultracentrifugation in a KBr density-gradient. The lipophorin (M, ˜ 700,000) is a high density lipoprotein (density = 1.13 g/ml) composed of 46% lipids and 4% carbohydrates. It consists of two apoproteins, apolipophorin-I (apo Lp-I, Mr ˜210,000) and apolipophorin-II (apo Lp-II, Mr ˜78,000). Both apoproteins are glycosylated as shown by periodate Schiff reagent staining and binding to the lectin, concanavalin A. Amino acid composition analysis of lipophorin showed predominance of aspartate (13%), glutamate (9%) and glycine (9%).

In an immunoblotting experiment, both apoproteins showed immunoreactivity with antiserum to B, fusca lipophorin and no cross-reactivity occurred with any other haemolvmph proteins. Immunodiffusion studies with the same antibodies showed cross-reactivity with haemolymph derived from other Lepidoptera and not from Orthoptera, Dictyoptera or Diptera.

Résumé

Une lipophorine a été isolée des larves de Busseola fusca, par ultracentrifugation avec gradient de densité. La lipophorine dont le poids moléculaire est d'environ ˜700,000 est une lipoprotéine de densité élevée (1.13 mg/ml) composée de 46% de lipides et de 4% de glucides. La lipophorine comporte 2 apoprotéines: l'apolipophorine-I (apo Lp-I, de poids moleculaire environ ˜210,000) et l'apolipophorine-II (apo Lp-II, de poids moléculaire ˜78,000). Les deux apoprotéines sont glycosylées comme le démontre la coloration au réactif du périodate de Schiff (PAS). La présence de manose comportant des chaines d'oligosaccharides a été établie par la réaction d'attachement de la lipophorine à la concanavaline-A sur colonne de sépharose. L'analyse de la composition en acides aminés de la lipophorine montre une prédominance d'aspartate (13%), de glutamate (9%) et de glycine (9%). Au cours de tests d'immunoblotting, les antisera des deux apoprotéines de la lipophorine ont réagi avec les anticorps. Nos résultats suggèrent également que les lipophorines d'insectes du même ordre développeraient une cross réaction.

Type
Research Articles
Copyright
Copyright © ICIPE 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartlett, G. J. (1959) Phosphorus assay in column chromatography. J. Biol. Chem., 234, 246268.CrossRefGoogle ScholarPubMed
Bligh, E. A. and Dyer, W. J. (1959) A rapid. method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911917.Google Scholar
Burnette, W. W. (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulphate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein. A. Anal. Biochem. 112, 195203.Google Scholar
Chino, H. and Kitazawa, K. (1981) Diacylglycerol-carrying lipoprotein of haemolymph of the locust and some insects. J. Lipid Res. 22, 10421052.Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356.CrossRefGoogle Scholar
De Kort, C. A. D. and Koopmanschap, A. B., (1987) Molecular characteristics of lipophorin, the juvenile hormone binding protein in the haemolymph of the Colorado potato beetle. Arch. Insect Biochem. Physiol. 5, 255269.Google Scholar
Haunerl, N. H. and Bowers, W. S. (1986) Binding of insecticides to lipophorin and arylphorin, two haemolymph proteins of Heliothis zea. Arch. Biochem. Physiol. 3, 8796.Google Scholar
Haunerland, N. H. and Bowers, W. S. (1989) Comparative studies on arthropod lipoproteins. Comp. Biochem. Physiol. 92 B, 137141.Google Scholar
Kapitany, R. A. and Zebrowski, E. J. (1973) A high resolution PAS stain for polyacrylamide gel. Anal. Biochem. 56, 361369.CrossRefGoogle ScholarPubMed
Kanost, M. R., Kawooya, J. K., Law, J. H., Ryan, R. O., Van Heusden, M. C. and Ziegler, R. (1990) Insect haémolymph proteins. Adv. Insect Physiol. 22, 299396.CrossRefGoogle Scholar
Laemmli, U. K. (1970) Cleavage of structural protein during the assembly of the heads of Bacteriophage T. Nature 227; 680685.Google Scholar
Ouchterlony, O. (1968) Antibody reaction in gels. In Handbook of Immunodiffusion and Immunoelectrophoresis, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
Osir, E. O., Anderson, D. R., Grimes, W. J. and Law, J. H. (1986) Studies on the carbohydrate moiety of vitellogenin from the tobacco hornworm, Manduca sexta. Insect Biochem. 16, 471478.Google Scholar
Osir, E. O., Labdngo, L. V. and Unnithan, G. C. (1989) A high molecular weight diapause-associated protein from the stem-borer, Busseola fusca: Purification andproperties. Arch. Insect Biochem. Physiol. 11, 173187.CrossRefGoogle Scholar
Osir, E. O., Unnithan, G. C. and Prestwich, G. D. (1991) Juvenile hormone binding to a 500 K diapause-associated protein of the stem-borer, Busseôla fusca. Comp. Biochem. Physiol. 99B, 165169.Google Scholar
Robbs, S. L., Ryan, R. O., Schmidt, J. O., Keim, P. S. and Law, J. H. (1985) Lipophorin of the larval honeybee, Apis mellifera. J. Lipid Res. 26, 241247.CrossRefGoogle ScholarPubMed
Ryan, R. O., Schmidt, J. O. and Law, J. H. (1984) Chemical and immunological properties of lipophorins from seven insect orders. Arch, insect Biochem. Physiol. 15, 375384.Google Scholar
Ryan, R.O., Prasad, S. V., Henrickson, E. J., Wells, M. A. and Law, J. H. (1986) Lipoprotein interconversions in an insect, Manduca sexta. Evidence for a lipid transfer factor in the hemolyimph. J. Biol. Chem. 261, 563568.CrossRefGoogle Scholar
Shapiro, J. P., Law, J. H. and Wells, M. A. (1988) Lipid transport in insects. Annu. Rev. Entomol. 33, 297318.CrossRefGoogle ScholarPubMed
Shapiro, J. P., Keim, P. S. and Law, J. H. (1984) Structural studies on lipophorin, an insect lipoprotein. J. Biol. Chem. 259, 36803685.Google Scholar
Shapiro, J. P. and Law, J. H. (1983) Locust adipokinetic hormone stimulates lipid metabolism in Manduca sexta. Biochem, Biophys. Res. Commun. 115, 929931.Google ScholarPubMed
Shapiro, J. P. (1988) Isolation and fluorescence studies on lipophorin from the weevil, Diaprepes dbbreviatus. Arch. Insect Biochem. Physiol. 7, 119131.Google Scholar
Unnithan, G. C. (1987) Development and reproductive biology of the maize stem borer, Busseola fusca (Fuller) (Lepid., Noctuidae). J. Appl. Entomol. 104, 172177.CrossRefGoogle Scholar
Wells, M. A., Ryan, R. O., Prasad, S. V. and Law, J. H. (1985) A novel procedure for the purification of polipophorin III. Insect Biochem 15, 565571.Google Scholar