Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T23:15:22.940Z Has data issue: false hasContentIssue false

Reproductive strategies for the seasonal tropics

Published online by Cambridge University Press:  19 September 2011

R. E. Jones
Affiliation:
Zoology Department, James Cook University, Townsville, Qld, Australia 4811
Get access

Abstract

Because seasonality in tropical habitats is controlled primarily by variations in rainfall rather than variations in temperature, it is frequently less predictable in timing, and spatially more patchy than seasonality in temperate habitats. This constrains the ways in which tropical species can adapt to seasonally adverse conditions, and in particular, may give greater importance to migratory behaviour as a component of seasonal adaptation.

Australian pierid and nymphalid butterflies illustrate these points. The species studied are present as adults during the dry season. Some undergo a reproductive diapause while others breed continuously. Major seasonal shifts in geographic distribution are a conspicuous feature of their biology, except in species whose reproduction is cued directly by rainfall, or are restricted to less seasonal microhabitats. Reproductive diapause is often associated with aggregation and with non-melanic polyphenism. Reasons for spending the dry season as an adult may include the fact that adult food remains available through the dry season even though larval resources disappear, and an improved capacity for opportunistic dispersal before breeding begins. The use of direct rainfall cues to control diapause may exclude non-migratory species from subtropical or temperate regions.

Résumé

Les changements saisonniers des habitats tropicaux sont controlés principalement par les variations du régime de pluie plutôt que de tempeŕature; de ce fait, ils sont fréquemment moins prévisibles dans leur minutage, et plus inégaux dans leur distribution spatiale que les habitats tempérés. Ces contraintes affectent la façon dont les espèces tropicales s'adaptent aux conditions saisonnières défavorables et en particulier, soulignent l'importance du comportement migratoire comme trait d'adaptation saisonnier.

Les papillons australiens appartenant aux familles Pieridae et Nymphalidae en fournissent l'illustration. Les espèces étudiées sont présentes à l'age adulte pendant la saison sèche. Certaines entrent dans une diapause reproductrice, alors que d'autres se reproduisent sans interruption.

Les importants changements saisonniers de leur distribution géographique représentent un aspect prépondérant de leur biologie, sauf dans le cas des espèces dont la reproduction est directement couplée au régime de pluie ou dans le cas de celles qui sont limitées a des micro habitats saisonniers. La diapause reproductrice est souvent associée au phénomène d'agrégation et de polyphénisme non mélanique. Les raisons pour lesquelles ces espèces passent la saison sèche à l état adulte sont peut-être le fait de la présence de nourriture pour adulte tout au long de la saison sèche, alors que. Les ressources des larves ont disparu, et une plus grande capacité de dispersion opportuniste avant le début de la reproduction. L'utilisation des signaux directement reliés au régime de pluie comme contrôle de la diapause exclut peut-être les espèces non migratoires, des régions subtropicales et tempérées.

Type
Symposium III: Life-History Traits in Tropical Insects
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bucher, E. H. (1982) Chaco and Caatinga—South American arid savannas, woodlands, and thickets. In Ecology of Tropical Savannas (Edited by Huntley, B. J. and Walker, B. H.), pp 4879. Springer-Verlag Ecological Studies 42, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Buskirk, R. E. and Buskirk, W. H. (1976) Changes in arthropod abundance in a highland Costa Rican forest. Am. Midl. Nat. 95, 288298.CrossRefGoogle Scholar
Common, I. F. B. and Waterhouse, D. F. (1981) Butterflies of Australia. Angus and Robertson, Sydney.Google Scholar
Claret, J. and Carton, Y. (1980) Diapause in a tropical species, Cothonaspis boulardi (parasitic Hymenoptera) Oecologia 45, 3234.CrossRefGoogle Scholar
Critchfield, H. J. (1966) General climatology. Prentice-Hall, New Jersey.Google Scholar
Denlinger, D. L. (1974) Diapause potential in tropical flesh flies. Nature 259, 223224.CrossRefGoogle Scholar
Denlinger, D. L. (1978) The developmental response of flesh flies (Diptera: Sarcophagidae) to tropical season. Oecologia 35, 105107.CrossRefGoogle Scholar
Denlinger, D. L. (1980) Seasonal and annual variation of insect abundance in the Nairobi National Park, Kenya. Biotropica 12, 100106.CrossRefGoogle Scholar
Denlinger, D. L. (1986) Dormancy in tropical insects. A. Rev. Ent. 31, 239264.CrossRefGoogle ScholarPubMed
Frith, C. B. and Frith, D. W. (1985) Seasonality of insect abundance in an Australian upland tropical rainforest. Aust. J. Ecol. 10, 237248.CrossRefGoogle Scholar
Hayes, J. L. (1982) A study of the relationships of diapause phenomena and other life history characters in temperate butterflies. Am. Nat. 120, 160170.CrossRefGoogle Scholar
Janzen, D. H. (1973) Sweep samples of tropical foliage insects: effects of season, vegetation types, time of day and insularity. Ecology 54, 687708.CrossRefGoogle Scholar
Janzen, D. H. and Schoener, T. W. (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49, 96110.CrossRefGoogle Scholar
Jones, R. E., Rienks, J., and Wilson, L. (1985) Seasonally and environmentally induced polyphenism In Eurema laeta lineata (Lepidoptera: Pieridae). J. Aust. Ent. Soc. 24, 161167.CrossRefGoogle Scholar
Jones, R. E. and Rienks, J. (1987) Reproductive seasonality in the tropical genus Eurema. Biotropica 19, 716.CrossRefGoogle Scholar
Kingsolver, J. G. (1983) Ecological significance of flight activity In Colias butterflies: implications for reproductive strategy and population structure. Ecology 64, 546551.CrossRefGoogle Scholar
Kitching, R. L. and Zalucki, M. P. (1981) Observations on the ecology of Euploea core Corinna (Nymphalidae) with special reference to an overwintering population. J. Lepid. Soc. 35, 106119.Google Scholar
Lowman, M. D. (1982) Seasonal variation in insect abundance among three Australian rainforests, with particular reference to phytophagous types. Aust. J. Ecol. 7, 353361.CrossRefGoogle Scholar
Monteith, G. B. (1982) Dry season aggregations of insects in Australian monsoon forests. Mem. Qd Mus. 20, 533543.Google Scholar
Moore, G. J. (1985) The behaviour and ecology of two tropical satyrine butterflies. Honours thesis. James Cook University, Townsville, Qld, Australia.Google Scholar
Moore, G. J. (1986) Host plant discrimination in tropical satyrine butterflies. Oecologia 70, 592595.CrossRefGoogle ScholarPubMed
Rienks, J. H. (1981) Morph determination and ecology of Catopsilia pomona (Lepidoptera: Pieridae). Honours thesis. James Cook University, Townsville, Qld, Australia.Google Scholar
Rienks, J. H. (1985) Phenotypic response to photoperiod and temperature in a tropical pierid butterfly. Aust. J. Zool. 33, 837847.CrossRefGoogle Scholar
Roland, J. (1982) Melanism and diel activity of alpine Colias (Lepidoptera: Pieridae). Oecologia 53, 214221.CrossRefGoogle ScholarPubMed
Scheermeyer, E. (1985) Some factors affecting the distribution of Euploea core Corinna (Macleay W. S.) (Lepidoptera: Danainae). Aust. J. Zool. 33, 339348.CrossRefGoogle Scholar
Scheermeyer, E. (1986) Overwintering in Australian dan-aines. Proc. 2nd MONOC Conference (in press).Google Scholar
Watt, W. B. (1968) Adaptive significance of pigment polymorphisms In Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evolution 22, 437458.CrossRefGoogle ScholarPubMed
Watt, W. B. (1969) Adaptive significance of pigment polymorphisms In Colias butterflies. II. Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme. Proc. Natl. Acad. Sci. U.S.A. 63, 767774.CrossRefGoogle ScholarPubMed
Wolda, H. (1978a) Seasonal fluctuations in rainfall, food, and abundance of tropical insects. J. Anim. Ecol. 47, 369381.CrossRefGoogle Scholar
Wolda, H. (1978b) Fluctuations in abundance of tropical insects. Am. Nat. 112, 10171045.CrossRefGoogle Scholar
Wolda, H. (1980) Seasonality of tropical insects. I. Leaf-hoppers (Homoptera) in Las Cumbres, Panama. J. Anim. Ecol. 49, 277290.CrossRefGoogle Scholar
Wolda, H. (1982) Seasonality of Homoptera on Barro Colorado Island. In The Ecology of a Tropical Rainforest: Seasonal Rhythms and Long-term Changes. (Edited by Leigh, E. G., Rand, A. S. and Windsor, D. M.) pp. 319330. Smithsonian Institute, Washington D.C.Google Scholar
Wolda, H. and Denlinger, D. L. (1984) Diapause in a large aggregation of a tropical beetle. Ecol. Enl. 9, 217230.CrossRefGoogle Scholar