Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:24:32.296Z Has data issue: false hasContentIssue false

Breeding for resistance to virus transmission by whiteflies in tomatoes*

Published online by Cambridge University Press:  19 September 2011

M. J. Berlinger
Affiliation:
Entomology Laboratory, Agricultural Research Organization (ARO), Gilat Regional Experiment Station, Mobile Post Negev 85 280, Israel
R. Dahan
Affiliation:
Entomology Laboratory, Agricultural Research Organization (ARO), Gilat Regional Experiment Station, Mobile Post Negev 85 280, Israel
Get access

Abstract

Tomatoes, an important tropical crop, suffer greatly from various plant viruses which are transmitted by the tobacco (sweetpotato) whitefly, Bemisia tabaci. Since these viruses cannot be controlled directly, the only path available to the grower is to prevent their transmission. The shortcomings of chemical control are well known and the use of alternative control methods is limited. Consequently, resistant cultivars would be the best solution for the grower. Breeding for resistance to the whiteflies as vectors of viruses has some clear advantages compared with breeding plants resistant to the virus. In search for sources of resistance among wild tomatoes, the two most resistant accessions of Lycopersicon pennella, L. hirsutum and L. hirsutum f. glabratum were selected. Although these accessions are susceptible to the virus, in the field they were only slightly, or not, infested. The resistance of L. pennella was found to be based entirely on the sticky material which is exuded by glandular trichomes located on the leaves and stems. The rate of resistance depends partially on environmental factors like photoperiod and light intensity. A reliable method for quantitative detection of resistance in L. pennella was developed.

Résumé

Les tomates, une récolte tropique importante, souffrent beaucoup de virus divers des plantes qui sont transmis par la mouche blanche du tabac (la patate), Bemisia tabaci. Puisque ces virus ne peuvent pas étre contrôlés directement, la seule alternative qui se présente a l'agriculteur c'est d'en prévenir leur transmission. Les défauts du contrôle chimique sont bien connus et l'application de méthodes alternatives de contrôle est limitée. Par conséquence, l'usage de plantes résistantes serait la meilleure solution pour le cultivateur. L'amelioration pour la résistance aux mouches blanches comme vecteur de virus à des avantages certains par comparaison avec l'amelioration de plantes resistantes au virus. Au cours de la recherche de sources de résistance parmi des tomates sauvages, les deux types les plus résistants du Lycopersicon pennella, L. hirsutum et L. hirsutum f. glabratum ont été séléctionnes. Ces types, soient susceptibles au virus, aux champs ils en étaient à peine ou pas du tout affectés. On a trouvé que la résistance du L. pennella est basé entièrement sur la matière visqueuse qui est émise par les trichomes glandulaires qui se trouvent sur les feuilles et sur les branches. L'intensité de la résistance dépend partiellement de facteurs environnementaux comme la photopériode et l'intensité du rayonnement. Une méthode sure pour la détection quantitative de la résistance dans L. pennella a été développée.

Type
Symposium VIII: Plant Resistance in Tropical Insect Pest Management
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belloti, A. and Kawano, K. (1980) Breeding approaches in Cassava. In: Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 313335. John Wiley & Sons, New York, N.Y.Google Scholar
Berlinger, M. J., Dahan, R. and Shevach-Urkin, E. (1984) Resistance to the tobacco whitefly, Bemisia tabaci, in tomato and related species: a quick screening method. Bull. IOBC/WPRS 1984/VII/4, 3940.Google Scholar
Dahan, R. (1985) Lycopersicon pennella as a source for resistance to the tobacco whitefly Bemisia tabaci in tomato. M.Sc. thesis, Ben-Gurion University of the Negev, Be'er Sheva, Israel. 55 + 11 pp. (in Hebrew with English summary).Google Scholar
Kennedy, G. G. (1976) Host plant resistance and the spread of plant viruses. Environ. Ent. 5, 827832.CrossRefGoogle Scholar
Lecoq, H., Cohen, S., Pitrat, M. and Labonne, G. (1979) Resistance to cucumber mosaic virus transmission by aphids In Cucumis melo. Phytopath. 69, 12231225.CrossRefGoogle Scholar
van Marrewijk, G. A. N. and de Ponti, O. M. B. (1975) Possibilities and limitations of breeding for pest resistance. Meded. Rijksfac. Landbouwwet. Gent. 40, 229.Google Scholar
Morag, Y. (1986) The wild tomato Lycopersicon hirsutum as a source for resistance to the tobacco whitefly, Bemisia tabaci, in tomato. M.Sc. thesis. Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel (in Hebrew with English summary).Google Scholar
Pathak, M. D. (1970) Genetics of plants in pest management. In Concepts of Pest Management (Edited by Rabb, R. L. and Guthrie, E. F.), pp. 138175. Proceedings of a conference held at North Carolina State University, Raleigh, NC.Google Scholar
Raman, K. (1980) Potential of physical and chemical resistant mechanisms for the control of potato insect virus vectors. Report of Planning Conference at CIP/LIMA, April 21–25, 1980 “Strategy for Virus Management in Potatoes”, International Potato Centre, Lima, Peru.Google Scholar
Shevach-Urkin, E. (1983) Comparison of the tobacco whitefly, Bemisia tabaci in the cultivated tomato Lycopersicon esculentum and the wild species Lycopersicon hirsutum f. glabratum. M.Sc. thesis, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel. 74 + 111 pp. (in Hebrew with English summary).Google Scholar