Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T00:33:30.209Z Has data issue: false hasContentIssue false

Chemical evaluation of Lake Victoria lakefly as nutrient source in animal feeds

Published online by Cambridge University Press:  19 September 2011

John Okedi
Affiliation:
Department of Zoology, Makerere University, P. O. Box 7062, Kampala, Uganda
Get access

Abstract

Biochemical analysis of lakefly (chironomid/chaoborid mixtures and Povilla adusta samples) were conducted to determine their nutrient value and their potential as source of high quality nutrients in animal feeds. The results showed lakefly as rich in protein (62–67 g/100 g), fat (10 g/100 g) and ash (4–6 g/100 g). Moisture was low as was crude fibre. Povilla were richer in crude protein (67.4 g/100 g) and calcium (152 mg/100 g). The chironomid chaoborid mixture was however extremely rich in phosphorus (1.2 × 103 mg/100 g) and potassium (1.2 × 103 mg/100 g). Other trace elements were present in significant quantities as were niacine, thiamine and riboflavin. It is therefore deemed feasible to produce high quality nutrient concentrates from lakefly material for use in animal feeds. Further work Is however essential to determine lakefly digestibility and palatability and to ascertain suitable lakewide harvest techniques for the lakefly.

Résumé

Les analyses biochimiques des mouches iacustres (les mixtures chironomide/chaoboride et les échantillons Povilla adusta) ont été faites pour déterminer leur valeur nutritive et leur potentiel de servir comme source de nutrition de haute qualité dans les aliments pour animaux. Les résultats ont montré que les mouches Iacustres sont riches en protéine (62–67 g/100 g), en graisse 10 g/100 g) et en cendres (4–6 g/100 g). La quantité d'humidité était base, constituant la fibre crue. Povilla étaient plus riches en protéine crude (67,4 g/100 g) et en calcium (152 mg/100 g). La mixture chironomide/chaoboride cependant était extrêmement riche en phosphore (1,2 × 103 mg/100 g), en potassium 1,2 × 103 mg/100 g). D'autres éléments presents en quantités importantes étaient: la niacine, la thiamine et le riboflavin. C'est done considéré faisable de produire des concentrés de nutrition de très haute qualité à partir des mouches Iacustres à utiliser dans les aliments pour animaux. Il faut néanmoins des études plus approfondies pour déterminer la digestabilité et la palatabilité des mouches lacustres et pour identifier les technique de sa collection sur le lac entier.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AOAC (1984) Official Methods of Analysis. 14th ed.Association of Official Analytical Chemists, Washington, DC.Google Scholar
Bergeron, D., Bushway, R. J., Roberts, F. L., Kornfield, I., Okedi, J. and Bushway, A. A. (1988) The nutrient composition of an insect flour sample from Lake Victoria, Uganda. J. Food Comp. Anal. 1, 371377.CrossRefGoogle Scholar
Bodenheimer, F. S. (1951) Insects as Human Food. W. Junk, The Hague, Netherlands.CrossRefGoogle Scholar
Chavunduka, D. M. (1975) Insects as a source of protein to the African. Rhod. Sci. News. 9, 217220.Google Scholar
Corbet, P. S. (1958) Lunar periodicity of aquatic insects in Lake Victoria. Nature 182, 330331.Google Scholar
DeFoliart, G. R. (1989) The human use of insects as food and as animal feed. J. Entomol. Soc. Am. 35, 1989.Google Scholar
Del Valle, F. R., Mena, M. H. and Bourges, H. (1982) An investigation into insect protein. J. FoodProc. & Pres. 6, 99110.Google Scholar
Finke, M. D., Sunde, M. L. and De Foliart, G. R. (1985) An evaluation of the protein quality of Mormon crickets when used as a high protein feedstuff for poultry. Poult. Sci. 64, 708712.Google Scholar
Gomez, P. A., Halut, R. and Collin, A. (1961) Production de protéines animates au Congo. Bull. Agric. Congo. 52, 689815.Google Scholar
Hartland-Rowe, R. (1955) Lunar rhythm in emergence of an Ephemeropteran. Nature 176, 657.CrossRefGoogle Scholar
Landy, S. V., De Foliart, G. R. and Sunde, M. L. (1986) Larval protein quality of six species of Lepidoptera (Saturniidae, Sphingidae). J. econ. Entomol. 79, 600604.CrossRefGoogle Scholar
MacBride, D. E. and Wyatt, C. J. (1983) Evaluation of modified AOAC determination of thiamin and riboflavin in foods. J. Food Sci. 48, 748.Google Scholar
MacDonald, W. W. (1956) Observations on the biology of Chaoborus and chironomids in Lake Victoria and on the feeding habits of the elephant snout fish, Mormyrus kannume, Forsk. J. Anim. Ecol. 25, 3653.CrossRefGoogle Scholar
Nakagaki, B. J., Sunde, M. L. and DeFoliart, G. R. (1987) Protein quality of the house cricket, Acheta domes ticus, when fed to broiler chicks. Poult. Sci. 66, 13671371.CrossRefGoogle Scholar
Oliveira, J. F. S., Passos de Carvalho, J., Bruno de Sausa, R. F. X. and Magdalena Sinao, M. (1976) The nutritional value of four species of insects consumed in Angola. Ecol. Food Nutr. 5, 9197.CrossRefGoogle Scholar
Okedi, J. (1987) The potential of lakefly biomass in Lake Victoria for utilization in animal feeds industry. A Report to US AID. Kampala, Uganda.Google Scholar
Platt, B. S. (1962) Tables of representative food values of foods commonly used in Tropical countries. Privy Council, Medical Research Council Special Rept. Series no. 302. H. M. Stationery Office, London.Google Scholar
Quin, P.J. (1959) Foods and Feeding Habits of the Pedi. Witwatersrand University, Johannesburg, Republic of South Africa.Google Scholar