Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T14:34:12.890Z Has data issue: false hasContentIssue false

Effects of Nutrition on Longevity, Fertility, Ovariol Yield, Food Consumption and Metamorphosis of the Grasshopper Euprepocnemis plorans

Published online by Cambridge University Press:  19 September 2011

G. El Sayed
Affiliation:
Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt, Fax 5722211
Get access

Abstract

Effects of adult nutrition were investigated by measuring female longevity, body weight, fertility and ovariol yield in the grasshopper, Euprepocnemis plorans reared on 3 different host plants. Rearing the insect on lupine (Lupinus termis) and horsebean (Vicia faba) caused significant reduction in fertility and ovariol yield of its first and second pods compared with those reared on clover (Trifolium alexandrinum). Resorption bodies were significantly higher in the ovariols of females fed on L. termis and V.faba. Diet also affected longevity and body weight. Fecundity was highest in females reared on T. alexandrinum. Significant reduction in haemolymph protein was noted in females reared on L. termis and V. faba. Nitrile (allylcyanide) significantly reduced the approximate digestibility (AD), efficiency of conversion of ingested food (ECI) and efficiency of conversion of digested food (ECD), inhibited nymphal growth, increased food consumption and decreased its assimilation. Feeding grasshoppers on T. alexandrinum treated with 125–250 μ mole/g resulted in various degrees of malformation and death.

Résumé

L'effet d'alimentation du criquet adult, Euprepocnemis plorans élevé sur 3 différentes plantes-hôtes a été déterminé par mensuration de la longévité de la femelle, le poids du corps, la fertilité et la production au niveau des ovarioles. En comparaison des insectes élevés sur le trèfle (Trifolium alexandrinum), l'élevage de ceux-ci sur le lupin (Lupinus termis) et sur la fève (Vicia faba) réduisait la fertilité et l'activité de production de l'ovariole au niveau du premier et second lobes. La résorption des corps était plus prononcée dans les ovarioles de femelles nourries sur L. termis et V. faba. Cette alimentation affectait aussi la longévité et le poids des insectes. La fécondité était plus élevée chez les femelles nourries sur T. alexandrinum. On a observé une réduction important du taux de protéines dans l'hémolymphe chez les femelles élevées sur L. termes et V.faba. Le nitrile (allyle-cyanide) réduisait la digestibilité escomptée, la capacité de transformer la nourriture ingérée et celle digérée. La même substance inhibait la croissance et le développement des nymphes et elle augmentait la quantité de nourriture consommée tout en diminuant son assimilation. L'élevage des criquets sur T. alexandrinum traité au moyen de 125–250 μmole/g de nitrile conduisait à des degrés divers de malformation et à la mortalité des insectes.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernays, E. A. and Chapman, R. F. (Eds) (1994) Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York. Handbook, 14 pp.CrossRefGoogle Scholar
Bowers, M. D. and Puttick, G. M. (1986) The fate of ingested irridoid glycosides in Lepidopteran herbivores. J. Chem. Ecol. 12, 169178.CrossRefGoogle Scholar
Chen, W., Isman, M. B. and Chiu, S. F. (1995) Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lepidoptera: Noctuidae). J. Appi. Ent. 119, 367370.Google Scholar
Dimetry, W. Z. and El-Hawary, M. A. (1995) Neem Azal. F as an inhibitor of growth and reproduction in the cowpea aphid Aphis craccivora Koch. J. Appi. Ent. 119, 6771.CrossRefGoogle Scholar
El-Sayed, G. (1994) Does chronic toxicity display biochemical coevolution in the desert locust Schistocerca gregaria (Forskal)? PhD thesis, Univ. of Cairo, Egypt.Google Scholar
Fenwick, G. R., Heaney, R. K. and Mullin, W. J. (1983) Glucosinolates and their breakdown products in food and food-plant. CRC Crû. Rev. Fd. Sci. Niitr. 18, 123200.Google Scholar
Hans, H. (1959) Contribution to the bionomics of Sitona lineatus. Z. Angew. Entomol. 44, 343386.Google Scholar
Henry, R. (1964) Principles and technics. Chim. Chem. Harper-Row, N-York, 182 pp.Google Scholar
Hinks, C. F. and Erlandson, M. A. (1995) The accumulation of haemolymph proteins and activity of digestive proteinases of grasshoppers (Melanoplus sanguinipes) fed wheat, oats or kochia. J. Insect Physiol. 41, 425433.CrossRefGoogle Scholar
Hinks, C. F., Hupka, D. and Olfert, O. (1993) Nutrition and protein economy in grasshoppers and locusts. Comp. Biochem. Physiol. 104A, 133, 142.CrossRefGoogle Scholar
Hough, J. A. and Pimentel, D. (1978) Influence of host foliage on the development, survival and fecundity of gypsy moth. Env. Ent. 7, 97102.Google Scholar
Jackson, G. J., Popov, G. B., Ibrahim, A. O., Alghamed, S. A. and Khan, A. M. (1972) Effects of natural food plants on the development, maturation, fecundity and phase of the desert locust Schistocerca gregaria. C. O. P. R., Publisher. UK 42, 117.Google Scholar
Langewald, J. and Schmutterer, H. (1995) Colour change in the desert locust, Schistocerca gregaria (Orth., Cyrtacanthacridinae), induced by topical treatment with azadirachtin-enriched neem oil in semi-field trials in Benin at different population densities, J. Appi. Ent. 119, 221226.CrossRefGoogle Scholar
Ma, W. G. (1972) Dynamics of feeding responses in Vieris brassicae as a function of chemosensory input: A behavioral, ultrastructural and electrophysiological study. Medea. Landbouwhogesch. Wageningen 72, 162.Google Scholar
Mattson, W. J. (1980) Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 68, 822827.Google Scholar
Popov, G. B., Wood, T. C. and Harris, M. J. (1984) Insect pests of the Sahara, pp. 145174. In Sahara Desert (Edited by Cloudsly-Thompson, J. L.). Pergamon Press, NY.Google Scholar
Raubenheinner, D. and Simpson, S. J. (1992) Analysis of covariance: An alternative to nutritional indices. Ent. Exp. Appl. 26, 221231.Google Scholar
Rhoades, D. F. (1979) Evolution of plant chemical defense against herbivores, pp. 154. In Herbivores: Their Interaction With Secondary Plant Metabolites (Edited by Rosenthal, G. A. and Janzen, D. H.). Academic Press, New York.Google Scholar
Roger, C., Vincent, C. and Coderre, D. (1995) Mortality and prédation efficiency of Coleomegilla maculata lengi Timb. (Col., Coccinellidae) following application of neem extracts (Azadirachta indica A. Juss., Meliaceae). J. Appi. Ent. 119, 439443.Google Scholar
Scriber, J. M. (1977) Limiting effect of low-leaf-water content on the nitrogen utilization, energy budget and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia 28, 269287.Google Scholar
Slansky, F. and Wheeler, G. S. (1991) Food consumption and utilization responses to dietary dilution with cellulose and water by velvetbean caterpillars, Anticarsia gemmátalis. Physiol. Ent. 6, 99116.CrossRefGoogle Scholar
Waldbauer, G. P. (1968) The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229288.Google Scholar