Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T21:57:41.592Z Has data issue: false hasContentIssue false

Impact of lambdacyhalothrin on arthropod natural enemy populations in irrigated rice fields in southern Brazil

Published online by Cambridge University Press:  01 September 2013

Leila Lucia Fritz*
Affiliation:
Programa de Pós-Graduação em Biologia, Laboratório de Microbiologia e Toxicologia, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS93001-970, Brazil
Elvis Arden Heinrichs
Affiliation:
Department of Entomology, University of Nebraska – Lincoln (UNL), Entomology Hall, Lincoln, NE68583-0816, USA
Vilmar Machado
Affiliation:
Programa de Pós-Graduação em Biologia, Laboratório de Microbiologia e Toxicologia, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS93001-970, Brazil
Tiago Finger Andreis
Affiliation:
Programa de Pós-Graduação em Biologia, Laboratório de Microbiologia e Toxicologia, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS93001-970, Brazil
Marciele Pandolfo
Affiliation:
Programa de Pós-Graduação em Biologia, Laboratório de Microbiologia e Toxicologia, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS93001-970, Brazil
Silvia Martins de Salles
Affiliation:
Programa de Pós-Graduação em Biologia, Laboratório de Microbiologia e Toxicologia, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS93001-970, Brazil
Jaime Vargas de Oliveira
Affiliation:
Estação Experimental do Arroz, Instituto Rio Grandense do Arroz (IRGA), Cachoeirinha, RS94930-030, Brazil
Lidia Mariana Fiuza
Affiliation:
Programa de Pós-Graduação em Biologia, Laboratório de Microbiologia e Toxicologia, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS93001-970, Brazil Estação Experimental do Arroz, Instituto Rio Grandense do Arroz (IRGA), Cachoeirinha, RS94930-030, Brazil
Get access

Abstract

The present study aimed to determine the selectivity of the pyrethroid lambdacyhalothrin on arthropod natural enemy populations in irrigated rice fields in Rio Grande do Sul, Brazil. The study was conducted at three sites: districts of Cachoeira do Sul, Eldorado do Sul and Capivari do Sul during the crop years of 2007/2008 and 2008/2009. Each site consisted of two subareas divided into four plots. One of the subareas received a spray application of 150 ml/ha of lambdacyhalothrin CS 50, while the other subarea was untreated. Arthropods were collected at 2, 15, 30 and 45 days after the application of the insecticide to assess its impact on natural enemy populations. The results indicated consistent differences in natural enemy populations between the treated and untreated areas, especially within the first 2 weeks after the application of the insecticide. Principal components analysis together with χ2 analysis revealed differences in the populations of Tetragnathidae, Anyphaenidae, Araneidae, Coccinellidae, Phytoseiidae and Coenagrionidae between the treated and untreated areas. This study indicated the existence of a great diversity of arthropod natural enemies in irrigated rice fields in a subtropical environment similar to that reported previously from rice fields in tropical environments. In addition, lambdacyhalothrin was shown to be a rapid acting insecticide, with a significant initial decrease in natural enemy populations followed by a rapid recovery beginning at 2 weeks after the application of the insecticide. Especially disconcerting is the severe impact of the insecticide on Phytoseiidae and Araneidae, which are considered key natural enemies for the management of rice pests in southern Brazil.

Type
Research Papers
Copyright
Copyright © icipe 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amalin, D. M., Peña, J. E., Duncan, R., Leavengood, J. and Koptur, S. (2009) Effects of pesticides on the arthropod community in the agricultural areas near the Everglades National Park. Proceedings of the Annual Meeting of the Florida State Horticultural Society 122, 429437.Google Scholar
Arida, G. S. and Heong, K. L. (1992) Blower-vac: a new suction apparatus for sampling rice arthopods. International Rice Research Newsletter 17, 3031.Google Scholar
Azevedo Filho, W. S. and Junior, P. H. S. P. (2000) Técnicas de coleta e identificação de insetos, 2nd edn.EDIPUCRS, Porto Alegre. 97 pp.Google Scholar
Berg, H. (2002) Rice monoculture and integrated rice–fish farming in the Mekong Delta, Vietnam – economic and ecological considerations. Ecological Economics 41, 95107.CrossRefGoogle Scholar
Borror, D. J., Triplehorn, C. A. and Johnson, N. F. (1989) An Introduction to the Study of Insects, 6th edn.College Publishing, State College, Pennsylvania. 875 pp.Google Scholar
Boutin, C., Martin, P. A. and Baril, A. (2009) Arthropod diversity as affected by agricultural management (organic and conventional farming), plant species and landscape context. Ecoscience 16, 492501.Google Scholar
Colignon, P., Hastir, P., Gaspar, C. and Francis, F. (2001) Effects of insecticide treatments on insect density and diversity in vegetable open fields. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66, 403411.Google Scholar
CONAB [Companhia Nacional de Abastecimento] (2011) Comparativo de área, produtividade e produção. Available at: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_09_09_08_55_35_boletim_setembro_-_2011.pdf.Google Scholar
Costa E. L. N. (2007) Ocorrência de artrópodes e seletividade de inseticidas na cultura do arroz irrigado. PhD Dissertation, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. 60 pp.Google Scholar
Costa, E. C. and Link, D. (1999) Efeito de inseticidas sobre predadores em arroz irrigado. Revista Faculdade Zootecnia Veterinária e Agronômica 5/6, 2431.Google Scholar
Croft, B. A. (1990) Arthropod Biological Control Agents and Pesticides. Wiley Interscience, New York. 723 pp.Google Scholar
Das, S., Roy, S. and Mukhopadhyay, A. (2010) Diversity of arthropod natural enemies in the tea plantations of North Bengal with emphasis on their association with tea pests. Current Science 99, 14571463.Google Scholar
Davey, R. B., Ahrens, E. H. and George, J. E. (1992) Efficacy of cyhalothrin and lambdacyhalothrin against Boophilus microplus (Acari: Ixodidae). Journal of Economic Entomology 85, 22862290.Google Scholar
Desneux, N., Decourtye, A. and Delpuech, J. M. (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81106.CrossRefGoogle ScholarPubMed
Ehler, L. E. (1998) Conservation biological control: past, present, and future, pp. 18. In Conservation Biological Control (Edited by Barbosa, P.). Academic Press, New York.Google Scholar
Fabellar, L. T. and Heinrichs, E. A. (1984) Toxicity of insecticides to predators of rice brown planthoppers, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Environmental Entomology 13, 832837.Google Scholar
Falcone, J. F. and DeWald, L. E. (2010) Comparisons of arthropod and avian assemblages in insecticide-treated and untreated eastern hemlock (Tsuga canadensis [L.] Carr) stands in Great Smoky Mountains National Park, USA. Forest Ecology and Management 260, 856863.Google Scholar
Ferreira, E. and Martins, J. F. S. (1984) Insetos prejudiciais ao arroz e seu controle. EMBRAPA/CNPAF, Goiânia. 67 pp.Google Scholar
Fountain, M. T., Brown, V. K., Gange, A., Symondson, W. O. C. and Murray, P. J. (2007) The effects of the insecticide chlorpyrifos on spider and Collembola communities. Pedobiologia 51, 147158.CrossRefGoogle Scholar
Gangurde, S. (2007) Aboveground arthropod pest and predator diversity in irrigated rice (Oryza sativa L.) production systems of the Philippines. Journal of Tropical Agriculture 45, 18.Google Scholar
Gardiner, M. M., Landis, D. A., Gratton, C., Fonzo, C. D. D., O'Neal, M., Chacon, J. M., Wayo, M. T., Schmidt, N. P., Mueller, E. E. and Heimpel, G. E. (2009) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecological Applications 19, 143154.CrossRefGoogle ScholarPubMed
Geiger, F., Wãckers, F. L. and Bianchi, F. (2009) Hibernation of predatory arthropods in semi-natural habitats. BioControl 54, 529535.Google Scholar
Hand, L. H., Kuet, S. F., Lane, M. C. G., Maund, S. J., Warinton, S. and Hill, I. R. (2001) Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments. Environmental Toxicology and Chemistry 20, 17401745.Google Scholar
Heinrichs, E. A. (1994) Biology and Management of Rice Insects. Wiley Eastern/IRRI, Los Baños/New Delhi. 799 pp.Google Scholar
Heinrichs, E. A. (2005) A new paradigm for implementing ecologically-based participatory IPM in a global context: the IPM CRSP Model. Neotropical Entomology 34, 143153.CrossRefGoogle Scholar
Heinrichs, E. A. and Barrion, A. T. (2004) Rice-Feeding Insects and Selected Natural Enemies in West Africa: Biology, Ecology, Identification. International Rice Research Institute (IRRI)/The Africa Rice Center (WARDA), Los Baños/Abidjan. 243 pp.Google Scholar
Heinrichs, E. A., Basilio, R. P. and Valencia, S. L. (1984) Buprofezin, a selective insecticide for the management of rice planthoppers (Homoptera: Delphacidae) and leafhoppers (Homoptera: Cicadellidae). Environmental Entomology 13, 515521.CrossRefGoogle Scholar
Heinrichs, E. A., Reissig, W. H., Valencia, S. L. and Chelliah, S. L. (1982) Rates and effect of resurgence-inducing insecticides on populations of Nilaparvata lugens (Homoptera: Delphacidae) and its predators. Environmental Entomology 11, 12691273.CrossRefGoogle Scholar
Heong, K. L., Manza, A., Catindig, J., Villareal, S. and Jacobsen, T. (2007) Changes in Pesticide Use and Arthropod Biodiversity in the IRRI Research Farm. Outlooks on Pest Management. International Rice Research Institute (IRRI), Los Baños. 5 pp.Google Scholar
Heong, K. L. and Schoenly, K. G. (1998) Impact of insecticides on herbivore–natural enemy communities in tropical rice ecosystems, pp. 381403. In Ecotoxicology: Pesticides and Beneficial Organisms (Edited by Haskell, P. T. and McEwen, P.). Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
IRRI [International Rice Research Institute] (1984) Proceedings of the FAO/IRRI Workshop on ‘Judicious and Efficient Use of Insecticides on Rice’. The International Rice Research Institute and Food and Agriculture Organization of the United Nations Intercountry Programme for Integrated Pest Control in Rice in South and Southeast Asia, Los Baños. 180 pp.Google Scholar
Jongman, R. H. G., Ter Braak, C. J. F. and Van Tongeren, O. F. R. (Eds) (1995) Data Analysis in Community and Landscape Ecology. 2nd edn.Cambridge University Press, New York. 324 pp.CrossRefGoogle Scholar
Kharboutli, M. S., Allen, C. T., Capps, C. and Earnest, L. D. (2000) Insecticides for early-season tarnished plant bug control, pp. 161166. In Proceedings of the 2000 Cotton Research Meeting and Summaries of Cotton Research in Progress. AAES Special Report 198 (Edited by Oosterhuis, D. M.). Arkansas Agricultural Experiment Station, Fayetteville, Arkansas.Google Scholar
Krauss, J., Gallenberger, I. and Steffan-Dewenter, I. (2011) Decreased functional diversity and biological pest control in conventional compared to organic crop fields. PLoS ONE 6, 502. DOI: 10.1371/journal.pone.0019502.CrossRefGoogle ScholarPubMed
Legendre P. and Legendre L. (1998) Numerical Ecology (Developments in Environmental Modelling). Elsevier, New York. 870 pp. ISBN: 978-0-444-89249-2.Google Scholar
Leng, X., Musters, C. J. M. and de Snoo, G. R. (2010) Synergy between nature reserves and agri-environmental schemes in enhancing ditch bank target species plant diversity. Biological Conservation 143, 14701476.CrossRefGoogle Scholar
Link, D., Costa, E. C. and Marchesan, E. (1987) Avaliação preliminar de diferentes densidades de Oebalus poecilus (Dallas, 1851) sobre o rendimento do arroz. Reunião da cultura do arroz irrigado 17, 229232.Google Scholar
Marc, P., Canard, A. and Ysnel, F. (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems and Environment 74, 229273.Google Scholar
Martins, J. F. S., Ribeiro, A. S. and Terres, A. L. S. (1989) Danos causado pelo percevejo-do-grão ao arroz irrigado. Reunião da cultura do arroz irrigado 18, 396404.Google Scholar
Martins, G. L. M., Toscano, L. C., Tomquelski, G. V. and Maruyama, W. I. (2009) Inseticidas no controle de Anticarsia gemmatalis (Lepidoptera: Noctuidae) e impacto sobre aranhas predadoras em soja. Revista Brasileira Ciências Agrárias 4, 128132.Google Scholar
Matteson, P. C. (2000) Insect pest management in tropical Asian irrigated rice. Annual Review of Entomology 45, 549574.Google Scholar
McCune, B. and Mefford, M. J. (1999) PC-ORD. Multivariate Analysis of Ecological Data, version 4. MJM Software, Gleneden Beach. 237 pp.Google Scholar
Nyffeler, M. and Sunderland, K. D. (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agriculture, Ecosystems and Environment 95, 579612.CrossRefGoogle Scholar
Oberg, S. (2007) Diversity of spiders after spring sowing – influence of farming system and habitat type. Journal of Applied Entomology 131, 524531.CrossRefGoogle Scholar
Oliveira, J. V. and Freitas, T. F. S. (2009) Trio de peso. Revista Cultivar 123, 1416.Google Scholar
Oliveira, J. V. and Kempf, D. (1989) Avaliação de dano ao arroz irrigado pelo percevejo do grão, Oebalus poecilus (Dallas, 1851). Reunião da cultura do arroz irrigado 18, 405409.Google Scholar
Raudonis, L. (2006) Comparative toxicity of spirodiclofen and lambdacyhalothrin to Tetranychus urticae, Tarsonemus pallidus and predatory mite Amblyseius andersoni in a strawberry site under field conditions. Agronomy Research 4, 317322.Google Scholar
Riechert, S. E. and Lawrence, K. (1997) Test for predation effects of single versus multiple species of generalist predators: spiders and their insect prey. Entomologia Experimentalis et Applicata 84, 147155.Google Scholar
Rock, G. C. (1979) Relative toxicity of two synthetic pyrethroids to a predator Amblyseius fallacis and its prey Tetranychus urticae. Journal of Economic Entomology 72, 293294.Google Scholar
Salim, M. and Heinrichs, E. A. (1985) Relative toxicity of insecticides to the whitebacked planthopper Sogatella furcifera (Horvath) (Homoptera: Delphacidae) and its predators. Journal of Plant Protection in the Tropics 2, 4547.Google Scholar
Settle, W. H., Ariawan, H., Astuti, E. T., Cahyana, W., Hakim, A. L., Hindayana, D. and Lestari, A. S. (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77, 19751988.Google Scholar
Seyfulina, R. R. (2010) The spider assemblage (Arachnida, Araneae) in agroecosystems of the Kuban Plain: species composition, spatial distribution, and seasonal dynamics. Entomological Review 90, 494510.CrossRefGoogle Scholar
Smith, H. G., Öckinger, E. and Rundlöf, M. (2010) Biodiversity and the landscape ecology of agri-environment schemes. Aspects of Applied Biology 100, 225232.Google Scholar
Teodorescu, I. and Cogãlniceanu, D. (2005) Rapid assessment of species diversity changes after pesticide application in agricultural landscapes. Applied Ecology and Environmental Research 4, 5562.Google Scholar
Ter Braak, C. J. F. (1995) Ordination. In Jongman R. H. G., Ter Braak, C. J. F. and Van Tongeren O. F. R. (eds). Data Analysis in Community and Landscape Ecology, pp. 91–173. Cambridge, Cambridge University Press.Google Scholar
UC Davis - University of California, Davis (2006) How to reduce Bee Poisoning from Pesticides. Available at: http://www.ipm.ucdavis.edu/PDF/PMG/pnw591.pdf.Google Scholar
USDA - United States Department of Agriculture (2013) Table 9 - Rice Area, Yield and Production. Available at: http://www.fas.usda.gov/psdonline/psdreport.aspx?hidReportRetrievalName=BVS&hidReportRetrievalID=893&hidReportRetrievalTemplateID=1.Google Scholar
Vorley, W. T. (1985) Spider mortality implicated in insecticide-induced resurgence of whitebacked planthopper (WBPH) and brown planthopper (BPH) in Kedah, Malaysia. International Rice Research Notes 10, 1920.Google Scholar
Whittingham, M. J. (2007) Will agri-environment schemes deliver substantial biodiversity gain, and if not why not? Journal of Applied Ecology 44, 15.CrossRefGoogle Scholar
Whittingham, M. J. (2011) The future of agri-environmental schemes: biodiversity gains and ecosystem service delivery? Journal of Applied Ecology 48, 509513.CrossRefGoogle Scholar
Wick, B. M. and Freier, B. (2000) Long-term effects of an insecticide application on non-target arthropods in winter wheat – a field study over 2 seasons. Anzeiger für Schädlingskunde 73, 6169.CrossRefGoogle Scholar
Wilby, A., Lan, L. P., Heong, K. L., Huyen, N. P. D., Quang, N. H., Minh, N. V. and Thomas, M. B. (2006) Arthropod diversity and community structure in relation to land use in the Mekong Delta, Vietnam. Ecosystems 9, 538549.Google Scholar