Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T07:37:41.218Z Has data issue: false hasContentIssue false

Morphometric trait differentiation between a wild and a mass-reared population of Anastrepha fraterculus (Diptera: Tephritidae)

Published online by Cambridge University Press:  13 October 2014

Paula Valeria Gómez Cendra*
Affiliation:
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), (1428)Buenos Aires, Argentina Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones (CONICET), Argentina
Diego Fernando Segura
Affiliation:
Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones (CONICET), Argentina Laboratorio de Genética de Insectos de Importancia Económica, Intituto de Genética E. A. Favret, INTA Castelar, Los Reseros y Las Cabañas, Castelar, Buenos Aires, Argentina
Andrea Claudia Alberti
Affiliation:
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), (1428)Buenos Aires, Argentina
Juan César Vilardi
Affiliation:
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), (1428)Buenos Aires, Argentina Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones (CONICET), Argentina
Get access

Abstract

The South American fruit fly Anastrepha fraterculus (Wiedemann) is an important pest in many countries. The sterile insect technique is an effective method of controlling Ceratitis capitata (Wiedemann) in Argentina and has been proposed for use against A. fraterculus. Because this technique relies on sterile mass-reared males mating with wild females, it is essential to verify that artificial rearing does not reduce male mating competitiveness. Several morphometric characters were evaluated to detect differences between a wild population and a laboratory strain that was derived from it and reared artificially since 1997. Eight morphometric traits were analysed as indicators of body size, head shape and potential mobility: Thorax Length, Head Width, Face Width, Eye Length, Wing Length, Wing Width, Third Tibia Length and Femur Length. The results were analysed using multivariate analysis of variance, linear multiple regression and logistic multiple regression. In general, laboratory flies were larger than wild ones (possibly because the larval diet was supplied ad libitum). Laboratory males had significantly larger Head Width and Eye Length and a smaller Wing Width than wild males. Laboratory females differed from wild ones only by having narrower wings. These results could be due to environmental and genetic factors, or as a consequence of genetic drift (for the latter) during colony establishment plus gradual adaptation to laboratory conditions, where flight ability is most likely less important (resources are found easily at close distances). Also, short-distance interactions among individuals are more frequent in a colony, possibly favouring increased facial trait sizes by sexual selection. Because long-term morphological changes could represent the beginning of intraspecific differentiation, they should probably be worthy of some consideration if a large mass-rearing colony is established.

Type
Research Papers
Copyright
Copyright © ICIPE 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A. C., Rodriguero, M. S., Gómez-Cendra, P., Saidman, B. O. and Vilardi, J. C. (2002) Evidence indicating that Argentinean populations of Anastrepha fraterculus (Diptera: Tephritidae) belong to a single biological species. Annals of the Entomological Society of America 95, 505512.Google Scholar
Aluja, M. (1994) Bionomics and management of Anastrepha. Annual Review of Entomology 39, 155178.Google Scholar
Aluja, M., Piñeiro, J., Jácome, I., Díaz-Fleischer, F. and Sivinski, J. (2000) Behavior of flies in the genus Anastrepha (Trypetinae: Toxotrypanini), pp. 375408. In Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (edited by Aluja, M. and Norrbom, A. L.). CRC Press, Boca Raton, Florida.Google Scholar
Barclay, H. J., Hargrove, J. W., Clift, A. and Meats, A. (2005) Procedures for declaring pest free status, pp. 363386. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (edited by Dyck, V. A., Hendrichs, J. and Robinson, A. S.). Springer, Dordrecht.Google Scholar
Bush, G. L., Neck, R. W. and Kitto, G. B. (1976) Screwworm eradication: inadvertent selection for noncompetitive ecotypes during mass rearing. Science 193, 491493.Google Scholar
Cabrera, A. L. and Willink, A. (1980) Biogeografía de América Latina. Secretaría General de la Organización de los Estados Americanos (OEA). Programa Regional de Desarrollo Científico y Tecnológico, Washington, District of Columbia. 122 pp.Google Scholar
Cayol, J. P. (2000) Changes in sexual behavior and life history traits of tephritid species caused by mass-rearing processes, pp. 843860. In Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (edited by Aluja, M. and Norrbom, A. L.). CRC Press, Boca Raton, Florida.Google Scholar
Dobzhansky, T. (1970) Genetics of the Evolutionary Process. Columbia University Press, New York. 505 pp.Google Scholar
Dyck, V. A., Hendrichs, J. and Robinson, A. S. (2005) Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Springer, Dordrecht. 787 pp.Google Scholar
Endler, J. A. (1986) Natural Selection in the Wild. Princeton University Press, Princeton, New Jersey.Google Scholar
Gómez Cendra, P., Calcagno, G., Belluscio, L. and Vilardi, J. (2011) Male courtship behavior of Anastrepha fraterculus (Wiedemann), the South American fruit fly, from an Argentinean laboratory strain. Journal of Insect Science 11, 118.Google Scholar
Gómez Cendra, P., Segura, D., Allinghi, A., Cladera, J. and Vilardi, J. (2007) Comparison of longevity between a laboratory strain and a natural population of Anastrepha fraterculus (Diptera: Tephritidae) under field cage conditions. Florida Entomologist 90, 147153.CrossRefGoogle Scholar
Hendrichs, J., Franz, G. and Rendon, P. (1995) Increased effectiveness and applicability of the sterile insect technique through male-only release for control of Mediterranean fruit flies during fruiting seasons. Journal of Applied Entomology 119, 371377.CrossRefGoogle Scholar
Hernández-Ortiz, V. (1992) El Género Anastrepha Schiner en México (Diptera: Tephritidae). Taxonomía, Distribución y sus Plantas Huéspedes. Instituto de Ecología, Sociedad Mexicana de Entomología, Xalapa, Veracruz. 162 pp.Google Scholar
Jaldo, H. E., Gramajo, M. C. and Willink, E. (2001) Mass rearing of Anastrepha fraterculus (Diptera: Tephritidae): a preliminary strategy. Florida Entomologist 84, 716718.Google Scholar
Janzen, F. J. and Stern, H. S. (1998) Logistic regression for empirical studies of multivariate selection. Evolution 52, 15641571.Google Scholar
Klassen, W. and Curtis, F. C. (2005) History of the sterile insect technique, pp. 336. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (edited by Dyck, V. A., Hendrichs, J. and Robinson, A. S.). Springer, Dordrecht.Google Scholar
Knipling, E. F. (1959) Sterile-male method of population control. Science 130, 902904.Google Scholar
Knipling, E. F. (1968) Genetic control of insects of public health importance. Bulletin of the World Health Organization 38, 421438.Google Scholar
Kotiaho, J. S., Simmons, L. W. and Tomkins, J. L. (2001) Towards a resolution of the lek paradox. Nature 410, 684686.Google Scholar
Lande, R. and Arnold, S. J. (1983) The measurement of selection on correlated characters. Evolution 37, 12101226.Google Scholar
Liedo, P., Salgado, S., Oropeza, A. and Toledo, J. (2007) Improving mating performance of sterile Mediterranean fruit flies (Diptera: Tephritidae) through slight changes in mass rearing conditions: demography and mating competitiveness. Florida Entomologist 90, 3340.Google Scholar
Liedo, P., Sosa, M. L., Villarreal, C., Briceño, D., Salgado, S., Valle, F. J., Oropeza, A., Chaclán, M. A. and Toledo, J. (2004) Courtship, morphometric and genetic analysis of medfly Ceratitis capitata males from three mass rearing systems, pp. 1117. In Quality Assurance of Mass Produced and Released Fruit Flies for SIT Programmes. Report of the 4th Research Co-ordination Meeting of FAO/IAEA, Tapachula, Chiapas, Mexico. IAEA, Vienna, Austria.Google Scholar
Lumley, T. (2007) The survey package. Available at:http://faculty.washington.edu/tlumley/survey/.Google Scholar
MacInnis, D. O., Tam, S., Grace, C. and Miyashita, D. (1994) Population suppression and sterility rates induced by variable sex-ratio, sterile insect releases of Ceratitis capitata (Diptera: Tephritidae) in Hawaii. Annals of the Entomological Society of America 87, 231240.Google Scholar
Malavasi, A., Morgante, J. S. and Prokopy, R. J. (1983) Distribution and activities of Anastrepha fraterculus (Diptera: Tephritidae) flies on host and nonhost trees. Annals of the Entomological Society of America 76, 286292.Google Scholar
Manso, F. (1998) Breeding technique of Anastrepha fraterculus (Wied.) for genetic studies, pp. 2530. In The South American Fruit Fly, Anastrepha fraterculus (Wied.); Advances in Artificial Rearing, Taxonomic Status and Biological Studies. IAEA-TECDOC-1064. IAEA, Vienna.Google Scholar
Mayr, E. (1954) Change of genetic environment and evolution, pp. 157180. In Evolution as a Process (edited by Huxley, J., Hardy, A. C. and Ford, E. B.). Allen and Unwin, London.Google Scholar
Mumford, J. D. (2005) Application of benefit/cost analysis to insect pest control using the sterile insect technique, pp. 481498. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (edited by Dyck, V. A., Hendrichs, J. and Robinson, A. S.). Springer, Dordrecht.Google Scholar
Nijhout, H. F. (2002) Development and evolution of adaptive polyphenisms. Evolution and Development 5, 918.Google Scholar
Norrbom, A. L. and Kim, K. C. (1988) A list of the reported host plants of the species of Anastrepha (Diptera: Tephritidae). USDA-APHIS-PPQ, Hyattsville, Maryland, pp. 81–52, 114 pp.Google Scholar
Norry, F. M., Calcagno, G., Vera, M. T., Manso, F. and Vilardi, J. C. (1999) Sexual selection on male morphology independent of male–male competition in the Mediterranean fruit fly (Diptera: Tephritidae). Annals of the Entomological Society of America 92, 571577.Google Scholar
Phillips, P. C. and Arnold, S. J. (1989) Visualizing multivariate selection. Evolution 43, 12091222.Google Scholar
Pinson, E. P., Tejada, L. O., Toledo, J., Enkerlin, W., Celedonio-Hurtado, H., Valle, J., Pérez, J. N. and Liedo, P. (2006) Caracterización de la adaptación de Anastrepha serpentina (Wied.) (Diptera: Tephritidae) a condiciones de cría masiva. Folia Entomologica Mexicana 45, 97112.Google Scholar
R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. Available at:http://www.R-project.org.Google Scholar
Robinson, A. S. and Van Heemert, C. (1982) Ceratitis capitata – a suitable case for genetic sexing. Genetica 58, 229237.Google Scholar
Rodriguero, M. S., Vera, M. T., Rial, E., Cayol, J. P. and Vilardi, J. C. (2002 a) Sexual selection on multivariate phenotype in wild and mass-reared Ceratitis capitata (Diptera: Tephritidae). Heredity 89, 480487.CrossRefGoogle Scholar
Rodriguero, M. S., Vilardi, J. C., Vera, M. T., Cayol, J. P. and Rial, E. (2002 b) Morphometric traits and sexual selection in medfly (Diptera: Tephritidae) under field cage conditions. Florida Entomologist 85, 143149.Google Scholar
Rutowski, R. L., Gislén, L. and Warrant, E. J. (2009) Visual acuity and sensitivity increase allometrically with body size in butterflies. Arthropod Structure and Development 38, 91100.Google Scholar
Sciurano, R. B., Rodriguero, M., Segura, D. F., Gómez Cendra, P., Allinghi, A., Cladera, J. L. and Vilardi, J. C. (2007) Sexual selection on multivariate phenotype in Anastrepha fraterculus (Diptera: Tephritidae) from Argentina. The Florida Entomologist 90, 163170.Google Scholar
Segura, D., Petit-Marty, N., Sciurano, R., Vera, T., Calcagno, G., Allinghi, A., Gómez Cendra, P., Cladera, J. and Vilardi, J. (2007) Lekking behavior of Anastrepha fraterculus (Diptera: Tephritidae). Florida Entomologist 90, 154162.Google Scholar
Selivon, D., Perondini, A. L. P. and Morgante, J. S. (2005) A genetic–morphological characterization of two cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae). Annals of the Entomological Society of America 98, 367381.Google Scholar
Shelly, T. E. (2001) Lek size and female visitation in two species of tephritid fruit flies. Animal Behaviour 62, 3340.Google Scholar
Shelly, T. E. and Whittier, T. S. (1997) Lek behavior of insects, pp. 273293. In Evolution of Mating Systems in Insects and Arachnids (edited by Choe, J. C. and Crespi, D. J.). Cambridge University Press, Cambridge.Google Scholar
Simões, P., Santos, J., Fragata, I., Mueller, L. D., Rose, M. R. and Matos, M. (2008) How repeatable is adaptive evolution? The role of geographical origin and founder effects in laboratory adaptation. Evolution 62, 18171829.Google Scholar
Simpson, G. G. (1953) The Major Features of Evolution. Columbia University Press, New York. 434 pp.Google Scholar
South American fruit fly page(University of Florida Institute of Food and Agricultural Sciences. Florida Department of Agriculture and Consumer Services). Available at:http://entnemdept.ufl.edu/creatures/fruit/tropical/frat07.htm (accessed accessed 2 November 2011).Google Scholar
Spiess, E. (1977) Genes in Populations. John Wiley and Sons, New York. 780 pp.Google Scholar
Steck, G. J. (1991) Biochemical systematics and population genetic structure of Anastrepha fraterculus and related species (Diptera: Tephritidae). Annals of the Entomological Society of America 84, 1028.Google Scholar
Vera, M. T. (1996) Selección sexual y caracteres morfométricos asociados en la mosca del Mediterráneo Ceratitis capitata (Diptera: Tephritidae). Bachelor scientific thesis. Universidad de Buenos Aires, Buenos Aires, Argentina. 64 pp.Google Scholar
Vera, T., Abraham, S., Oviedo, A. and Willink, E. (2007) Demographic and quality control parameters of Anastrepha fraterculus (Diptera: Tephritidae) maintained under artificial rearing. Florida Entomologist 90, 5357.Google Scholar
Vera, M. T., Cladera, J. L., Calcagno, G., Vilardi, J. C., Mcinnis, D. O. and field working group, (2003) Remating of wild Ceratitis capitata (Diptera: Tephritidae) females in field cages. Annals of the Entomological Society of America 96, 563570.Google Scholar
Vergani, A. R. (1956) Distribución Geográfica de las Moscas de los Frutos en la Argentina. IDIA (Dirección General de Investigaciones Agropecuarias), Buenos Aires, Argentina 99, 15.Google Scholar