Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T22:21:45.807Z Has data issue: false hasContentIssue false

Regulation of blood gorging

Published online by Cambridge University Press:  19 September 2011

Rachel Galun
Affiliation:
Department of Parasitology, The Hebrew University-Hadassah Medical School, Jerusalem
Get access

Abstract

Gorging is stimulated in some insects by plasma components alone. In other insects engorgement is maximal only when blood cell components are present in addition to the plasma. Plasma components recognized by insects are NaCl, NaHCO3 (some anopheline mosquitoes) and albumin (Anopheles dirus and Pediculus humanus). Those requiring blood cells recognize this fraction by its adenine nucleotides which, for optimal engorgement, have to be offered in the presence of isotonic NaCl solution buffered by NaHCO3 (i.e. Rhodnius, culicine mosquitoes, Simulium, tsetse and Tabanus). The presence of albumin in the feeding medium may lower the level of nucleotides required to induce gorging (i.e. Aedes).

For most haematophagous insects requiring the cellular fraction, ATP is the most effective phagostimulant. It may however be replaced quite effectively by non-hydrolyzable analogues, indicating that ATP is not essential as a source of energy for the gustatory receptors involved in blood meal recognition.

Résumé

L'engorgement est stimulé chez certains insectes seulement par les composants du plasma. Chez d'autres insectes l'engorgement maximal n'est obtenu qu'en présence des composants des cellules du sang, en plus de ceux du plasma. Les composants du plasma reconnus par les insectes sont NaCl, NaHCO3 (certains anophèles) et l'albumine (Anopheles dirus et Pediculus humanus). Les insectes exigeant la présence des cellules du sang, reconnaissent cette fraction à ses nucléotides d'adenine. Pour que l'engorgement soit maximal ceux-ci doivent être présentés dans une solution tampon physiologique (NaCl/NaHCO3) (p.e. Rhodnius, culicidés, Simulium, mouches tsé-tsé et Tabanus). La présence d'albumine dans le milieu nutritif peut abaisser le niveau des nucleotides necessaire pour provoquer l'engorgement (p.e. Aedes).

Pour la plupart des insectes hematophages qui exigent la fraction cellulaire, l'ATP est le phagostimulant le plus efficace. On peut cependant le remplacer par des analogues non hydrolysables tout aussi efficaces. Ceci indique que l'ATP n'est pas une source d'énergie essentielle pour les récepteurs gustatifs concernés dans la reconnaissance du sang.

Type
Symposium V: Host-seeking Mechanisms of Arthropods of Medical and Veterinary Importance
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cross, H. F. and Wharton, G. W. (1966) Feeding tests with several species of mites on different kinds of blood and blood components. Ann. Ent. Soc. Am. 59, 182185.CrossRefGoogle Scholar
Friend, W. G. (1965) The gorging response in Rhodnius prolixus. Can. J. Zool. 43, 125132.CrossRefGoogle ScholarPubMed
Friend, W. G. (1978) Physical factors affecting the feeding responses of Culiseta inornata to ATP, sucrose and blood. Ann. Ent. Soc. Am. 74, 151154.CrossRefGoogle Scholar
Friend, W. G. and Smith, J. J. B. (1971) Feeding In Rhodnius prolixus: mouthparts activity and salivation and their correlation with changes of electrical resistance. J. Insect Physiol. 17, 233243.CrossRefGoogle Scholar
Friend, W. G. and Smith, J. J. B. (1982) ATP analogues and other phosphate compounds as gorging stimulants of Rhodnius prolixus. J. Insect Physiol. 28, 371376.CrossRefGoogle Scholar
Friend, W. G. and Stoffolano, J. G. (1983) Feeding response of the horsefly, Tabanus nigrovittatus, to phagostimulants. Phys. Ent. 8, 377383.CrossRefGoogle Scholar
Galun, R. (1966) Feeding stimulants of the rat flea Xenopsylla cheopis. Life Sci. 5, 13351342.CrossRefGoogle Scholar
Galun, R. (1975) The role of host blood in the feeding behavior of ectoparasites. In: Dynamic Aspects of Host-Parasite Relationships (Edited by Zuckerman, A.), pp. 132162, Keter Publishing House, Jerusalem.Google Scholar
Galun, R. (1976) Regulation of feeding in the tick Ornithodoros tholozani. In: Tick-borne Diseases and their Vectors (Edited by Wilele, J. K. H.), pp. 6467. University of Edinburgh.Google Scholar
Galun, R., Avidor, Y. and Bar-Zeev, M. (1963) Feeding response In Aedes aegypti: stimulation by ATP. Science 142, 16741675.CrossRefGoogle Scholar
Galun, R. and Kindler, S. H. (1965) Glutathione as an inducer of feeding in the tick Ornithodoros tholozani. Science 147, 166167.Google Scholar
Galun, R. and Kindler, S. H. (1968) Chemical basis of feeding in the tick Ornithodoros tholozani. J. Insect Physiol. 14, 14091421.CrossRefGoogle Scholar
Galun, R., Koontz, L. C. and Gwadz, R. W. (1985) Engorgement response of anopheline mosquitoes to blood fractions and artificial solutions. Physiol. Ent. 10, 145149.CrossRefGoogle Scholar
Galun, R., Koontz, L. C., Gwadz, R. W. and Ribeirro, J. M. C. (1985) Effect of ATP analogues on the gorging response of the mosquito Aedes aegypti. Physiol. Ent. 10, 275282.CrossRefGoogle Scholar
Galun, R., Oren, N. and Zecharia, M. (1984) Effect of plasma components on the feeding response of the mosquito Aedes aegypti to adenine nucleotides. Physiol. Ent. 9, 403–108.CrossRefGoogle Scholar
Galun, R., Sternberg, S. and Mango, C. (1978) Effects of host spectra on feeding behaviour and reproduction of soft ticks. Bull. ent. Res. 68, 153157.CrossRefGoogle Scholar
Gatehouse, A. G. (1970) The probing response of Stomoxys calcitrans, certain physical and olfactory stimuli. J. Insect Physiol. 16, 6174.CrossRefGoogle ScholarPubMed
Hosoi, T. (1959) Identification of blood components which induce gorging in the mosquito. J. Insect Physiol. 3, 191218.CrossRefGoogle Scholar
Kemp, D. H., Stone, B. F. and Binington, K. C. (1982) Tick attachment and feeding: role of the mouthparts, feeding apparatus, salivary gland secretions and host response. In: Physiology of Ticks (Edited by Obenchain, F. D. and Galun, R.), pp. 114168, Pergamon Press.Google Scholar
Kirkwood, A. C. (1971) In vitro feeding of Dermanyssus gallinas. Exp. Parasitol. 29, 16.CrossRefGoogle ScholarPubMed
Margalit, J., Galun, R. and Rice, M. J. (1972) Mouthpart sensilla of the tsetse fly and their function. I. Feeding patterns. Ann. Trop. Med. Hyg. 66, 525536.Google ScholarPubMed
Mumcuoglu, Y. and Galun, R. (1987) Engorgement response of human body lice Pediculus humanus to blood fractions and their components. Physiol. Ent. 12 (in press).Google Scholar
Owen, W. B. (1963) The contact chemoreceptor organs of the mosquito and their function in feeding behavior. J. Insect Physiol. 9, 7387.CrossRefGoogle Scholar
Ready, P. D. (1978) Feeding habits of laboratory-bred Lutzomia longipalpis. J. Med. Ent. 14, 545552.CrossRefGoogle ScholarPubMed
Smith, J. J. B. and Friend, W. G. (1982a) Feeding behavior in response to blood fractions and chemical phagostimulants in the blackfly Simulium venustum, Physiol. Ent. 7, 219226.CrossRefGoogle Scholar
Smith, J. J. B. and Friend, W. G. (1982b) Diphosphoglycerate and phytic acid as feeding stimulants for the blood feeding bug Rhodnius prolixus. Comp. Biochem. Phys. 72A, 133136.CrossRefGoogle Scholar