Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T04:51:36.474Z Has data issue: false hasContentIssue false

Repellent and insecticidal properties of essential oils against housefly, Musca domestica L.*

Published online by Cambridge University Press:  19 September 2011

D. Singh
Affiliation:
Central Institute of Medicinal and Aromatic Plants, P. B. No. 1, P. O. R. S. M. Nagar, Lucknow- 226 016, India
A. K. Singh
Affiliation:
Central Institute of Medicinal and Aromatic Plants, P. B. No. 1, P. O. R. S. M. Nagar, Lucknow- 226 016, India
Get access

Abstract

Plant essential oils possess diversified insecticidal properties. Under screening programme of survey of bioactive agents for insect control 31 essential oils from different botanicals (2% in acetone), were studied for repellency and direct toxicity (insecticidal) against laboratory bred houseflies, Musca domestica L. The essential oils obtained from Ocimum gratissimum L., Thymus serpyllum L., Illicium verum Hooks, f., Myristica fragrans Houtt., Curcuma amada Roxb. showed 100% repellent activity, and Acorus calamus L. and Thymus serpyllum L. showed about 40% insecticidal activity. Results were compared with N, N-diethyl-meta-toluamide, dimethyl phthalate, malathion, pyrethrum extract, thymol, mineral oil and piperonylbutoxide. Biochemical studies of these promising oils may emerge new leads in developing future pesticides.

Résumé

Les huiles essentielles des plantes possèdent des propriétés multiples. Au cours d'un programme d'évaluation de substances biologiques actives pour la lutte contre les insectes, 31 huiles essentielles provenant de differents extraits botaniques dans 2% d'acétone ont été testées pour leur pouvoir répulsif et leur toxicité directe (insecticide) sur des mouches domestiques élevées au laboratoire. Les huiles essentielles obtenues de Ocimum pratissimum L., Thymus serphyllum L, Illicium verum Hooks.f., Myristica fragrans Houtt., Curcuma amada Roxb. ont induit 100% d'activité repulsive alors que Acorus calamus L., et Thymus serphyllum L., ont montré une activité insecticide de 40% environ. Les résultats furent comparés à ceux de N, N-diethyl-meta-toluamide, de dimethyl phthalate, du malathion, d'extrait de pyrèthre, de thymol, d'huile minérale et de pyperonylbutoxide. Des études biochimiques de ces huiles prometteuses pourraient se dégager de nouvelles perspectives pour le développement de nouvelles molécules de pesticides.

Type
Research Articles
Copyright
Copyright © ICIPE 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. J. econ. Entomol. 18, 265267.CrossRefGoogle Scholar
Anonymous (1985) Perfume repellent. New Scientist. 105, 21.Google Scholar
Brattsten, L. (1979) Drug metabolism. In Herbivores, Their Interaction with Secondary Plant Metabolites (Edited by Rosenthal, G. A. and Janzen, D. H.), p. 35. Academic, New York.Google Scholar
Brattsten, L. B., Holyoke, C. W. Jr, Leeper, J. R. and Rafa, K. F. (1986) Insecticide resistance: Challenge to pest management and basic research. Science 231, 12551260.CrossRefGoogle ScholarPubMed
Dongre, T. K. and Rahalkar, G. W. (1982) Effect of Blumea eriantha (Compositae) oil on reproduction in Earias vittella F. Experientia 38, 9899.CrossRefGoogle Scholar
Guenther, E. (1948) The Essential Oils. Vol. 1, D. Van Nostrand, New York.Google Scholar
Iwuala, M. O. E., Osisiogu, I. U. W. and Agabakwuru, E. O. P. (1981) Dennettia oil a potent new insecticide: Tests with adults and nymphs of Periplaneta americana and Zonocerus variegatus. J. econ. Entomol. 74, 249252.CrossRefGoogle Scholar
Kulkarni, R. A. (1986) The future of pest control and pesticide industry. Pure Appl. Chem. 58, 917924.CrossRefGoogle Scholar
Satyavati, G. V., Raina, M. K. and Sharma, M. (1976) Medicinal Plants of India. Indian Council of Medical Research. Cambridge Printing Works, Delhi, India, pp. 488.Google Scholar
Sawhney, S. S., Suri, R. K. and Thind, T. S. (1977) Antibacterial efficacy of some essential oils in vitro. Indian Drugs 15, 30.Google Scholar
Saxena, B. P., Kaul, O., Tikku, K. and Atal, C. K. (1977) A new insect chemosterilant isolated from Acorus calamus L. Nature (London) 270, 512513.CrossRefGoogle Scholar
Singh, D. and Agrawal, S. K. (1988) Himachalol and β-Himachalene: Insecticidal principles of Himalayan cedarwood oil. J. Chem. Ecol. 14, 11451151.CrossRefGoogle ScholarPubMed
Singh, D. and Jain, D. C. (1987) Relative toxicity of various organic solvents generally used in screening plant products for insecticidal activity against the housefly Musca domestica L. Indian J. Exp. Biol. 25, 569570.Google Scholar
Singh, D. and Rao, S. M. (1985) Toxicity of cedarwood oil against pulse beetle Callosobruchus chinensis Linn. Indian Perf. 29, 201204.Google Scholar
Singh, D. and Rao, S. M. (1986) Effect of cedarwood oil on reproduction of Dysdercus koenigii (F.). Curr. Sci. 55, 422423.Google Scholar
Singh, D., Rao, S. M. and Tripathi, A. K. (1984) Cedarwood oil as a potential insecticidal agent against mosquitoes. Naturwiss. 71, 265266.CrossRefGoogle ScholarPubMed
Singh, D., Siddiqui, M. S. and Sharma, S. (1988) Reproduction retardant and fumigant properties in essential oils against rice weevil (Coleoptera: Curculionidae) in stored wheat. J. econ. Entomol. 82, 727737.CrossRefGoogle Scholar