Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T22:30:32.538Z Has data issue: false hasContentIssue false

The identification of minerals in soil colloids

Published online by Cambridge University Press:  27 March 2009

G. Nagelschmidt
Affiliation:
Chemistry Department, Rothamsted Experimental Station, Harpenden

Extract

X-ray, optical, dehydration and chemical methods in use for the identification of minerals in soil colloids are discussed with special regard to their limitations. These are mainly due to uncertainties about the variation of physical properties of standard minerals with decreasing grain size and the possible existence and importance of amorphous material. The aggregate method in X-ray analysis, which is specially important for soil colloids, is described. Various techniques for dehydration and optical analysis are discussed, and it is concluded that they are useful only when used in combination with X-ray data. The advantages of combining various chemical methods with X-ray analysis are pointed out.

Standard data are given for a number of minerals, and the evidence for their occurrence in soil colloids is reviewed. These minerals are quartz, cristobalite, oxides and hydroxides of iron and aluminium, minerals of the kaolinite, montmorillonite and mica groups.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achenbach, H. (1931). Chem. d. Erde, 6, 307.Google Scholar
Agafonoff, V. (1936). Trans. Third Int. Congr. Soil Sci. 3, 74.Google Scholar
Alexander, L. T. & Haring, M. M. (1936). J. phys. Chem. 40, 195.CrossRefGoogle Scholar
Alexander, L. T. & Hendricks, S. B. (1938). Trans. Int. Soc. Soil Sci. Comm. 2, A, 11.Google Scholar
Antipov-Karataev, J. N. & Brunovsky, B. K. (1936). Kolloidzschr. 75, 325.Google Scholar
Baren, F. A. van (1936). Z. Kristallogr. 95, 464.CrossRefGoogle Scholar
Böhm, J. (1925). Z. anorg. Chem. 149, 203.CrossRefGoogle Scholar
Böhm, J. (1928). Z. Kristallogr. 68, 567.CrossRefGoogle Scholar
Boldyrev, A. K. (1938). Ann. Inst. min., Leningrad, 2, 1158.Google Scholar
Bradley, F. W., Grim, R. E. & Clark, G. L. (1937). Z. Kristallogr. 97, 216.Google Scholar
Bragg, W. H. (1938). Not. Proc. roy. Instn, 30, 39.Google Scholar
Bray, R. H., Grim, R. E. & Kerr, P. F. (1935). Bull. geol. Soc. Amer. 46, 1909.CrossRefGoogle Scholar
Brentano, J. C. M. (1938). Proc. phys. Soc. 50, 247.CrossRefGoogle Scholar
Brill, R. (1933). Z. Kristallogr. 83, 323.CrossRefGoogle Scholar
Brindley, G. W. & Spiers, F. W. (1938). Proc. phys. Soc. 50, 17.CrossRefGoogle Scholar
Buzagh, A. V. (1929). Kolloidzschr. 47, 223.Google Scholar
Byers, H. G., Alexander, L. T. & Holmes, R. S. (1935). Tech. Bull. U.S. Dep. Agric. 484.Google Scholar
Clark, G. L. & Reynolds, G. H. (1935). Univ. Toronto Stud. Geol. 38, 13.Google Scholar
Clark, G. L., Riecken, F. F. & Reynolds, D. H. (1937). Z. Kristallogr. 96, 273.CrossRefGoogle Scholar
Correns, C. W. (1925). Fortschr. Min. 10, 119.Google Scholar
Correns, C. W. & Mehmel, M. (1936). Z. Kristallogr. 94, 337.CrossRefGoogle Scholar
Correns, C. W. & Schlünz, F. K. (1936). Z. PflErnähr. Düng. 44, 316.CrossRefGoogle Scholar
Dunstall, W. J. (1938). Science Diploma Paper, Imp. Coll. Sci., London.Google Scholar
Engelhardt, W. von (1937 a). Fortschr. Min. 21, 276.Google Scholar
Engelhardt, W. von (1937 b). Chem. d. Erde, 11, 17.Google Scholar
Favejee, J. CH. L. (1939). Z. Kristallogr. 100, 425.CrossRefGoogle Scholar
Fricke, R. (1929). Z. anorg. Chem. 179, 287.CrossRefGoogle Scholar
Fricke, R. & Severin, H. (1932). Z. anorg. Chem. 205, 287.CrossRefGoogle Scholar
Gieseking, J. E. (1939). Soil Sci. 47, 1.CrossRefGoogle Scholar
Grim, R. E. (1934). J. sediment. Petrol. 4, 45.Google Scholar
Grim, R. E. & Bray, R. H. (1936). Bull. Amer. ceram. Soc. 19, 307.CrossRefGoogle Scholar
Grim, R. E., Bray, R. H. & Bradley, W. F. (1937). Amer. Min. 22, 813.Google Scholar
Gruner, J. W. (1933). Z. Kristallogr. 85, 345.CrossRefGoogle Scholar
Gruner, J. W. (1935). Amer. Min. 20, 475.Google Scholar
Hansen, W. C. & Brownmiller, L. T. (1928). Amer. J. Sci. 15, 225.CrossRefGoogle Scholar
Hardy, F. (1931). J. agric. Sci. 21, 150.CrossRefGoogle Scholar
Harrington, E. A. (1927). Amer. J. Sci. 13, 467.CrossRefGoogle Scholar
Hauser, E. A. & Reed, C. E. (1937). J. phys. Chem. 41, 911.CrossRefGoogle Scholar
Hellmers, J. H. & Köhler, R. (1933). Z. Pflernähr. Düng. A, 29, 309.CrossRefGoogle Scholar
Hellmers, J. H. & Köhler, R. (1934). Z. PflErnähr. Düng. A, 35, 208.CrossRefGoogle Scholar
Hendricks, S. B. (1938 a). Amer. Min. 23, 295.Google Scholar
Hendricks, S. B. (1938 b). Amer. Min. 23, 863.Google Scholar
Hendricks, S. B. (1938 c). Z. Kristallogr. 100, 251.CrossRefGoogle Scholar
Hendricks, S. B. & Fry, W. H. (1930). Soil Sci. 29, 457.CrossRefGoogle Scholar
Hofmann, U., Endell, K. & Wilm, D. (1933). Z. Kristallogr. 86, 340.CrossRefGoogle Scholar
Hüttig, F. & Garside, H. (1929). Z. anorg. Chem. 179, 49.CrossRefGoogle Scholar
Hüttig, G. F. & Peter, A. (1931). Kolloidzschr. 54, 140.Google Scholar
Hüttig, G. F. & Wittgenstein, E. von (1928). Z. anorg. Chem. 71, 323.CrossRefGoogle Scholar
Hüttig, G. F. & Zörner, A. (1931). Z. Elektrochem. 36, 259.Google Scholar
Jacob, A., Hofmann, U. & Loofmann, H. (1935). Trans. Third Int. Congr. Soil Sci. 1, 85.Google Scholar
Jacob, A., Hofmann, U., Loofmann, H. & Maegdefrau, E. (1935). Beih. Z. Ver. dtsch. Chem. 21, 1.Google Scholar
Jong, W. F. de (1930). Naturw. Tijdskr. 12, 69.Google Scholar
Kelley, W. P. & Dore, W. H. (1938). Proc. Soil Sci. Soc. Amer. 2, 115.CrossRefGoogle Scholar
Kelley, W. P., Dore, W. H. & Brown, S. M. (1931). Soil Sci. 31, 25.CrossRefGoogle Scholar
Kelley, W. P., Jenny, H. & Brown, S. M. (1936). Soil Sci. 41, 259.CrossRefGoogle Scholar
Kelley, W. P., Woodford, A. O., Dore, W. H. & Brown, S. M. (1939). Soil Sci. 47, 175.CrossRefGoogle Scholar
Kerr, P. F. (1938). J. Amer. ceram. Soc. 21, 267.CrossRefGoogle Scholar
Knopf, A. (1933). Publ. Hlth Rep. Wash. 48, 183.CrossRefGoogle Scholar
Kurnakow, N. S. & Rode, E. J. (1928). Z. anorg. Chem. 169, 57.CrossRefGoogle Scholar
Kuron, H. (1930). Z. PflErnähr. Düng. 18, 179.Google Scholar
Kuron, H. (1936). Z. PflErnähr. Düng. 45, 352.CrossRefGoogle Scholar
Lapparent, J. de (1937). Z. Kristallogr. 98, 233.CrossRefGoogle Scholar
Lapparent, J. (1939). Bull. Soc. franç. Minér. 61, 253.Google Scholar
Larsen, E. S. (1938). Amer. J. Sci. 35, 94.CrossRefGoogle Scholar
Lehl, H. (1936). J. phys. Chem. 40, 47.CrossRefGoogle Scholar
Levin, J. & Ott, E. (1934). Z. Kristallogr. 85, 305.CrossRefGoogle Scholar
Line, W. R. & Aradine, P. W. (1937). Industr. Engng Chem. Anal. ed. 9, 60.Google Scholar
Longchambon, H. (1936). Bull. Soc. franç. Minér. 59, 1.Google Scholar
Maegdefrau, E. & Hofmann, U. (1937). Z. Kristallogr. 98, 31.Google Scholar
Marshall, C. E. (1930). Trans. Faraday Soc. 26, 173.CrossRefGoogle Scholar
Marshall, C. E. (1935 a). Z. Kristallogr. 90, 8.CrossRefGoogle Scholar
Marshall, C. E. (1935 b). Z. Kristallogr. 91, 433.CrossRefGoogle Scholar
Mehmel, M. (1937). Chem. d. Erde, 11, 1.Google Scholar
Migeon, G. (1936). Bull. Soc. franç. Minér. 59, 6.Google Scholar
Möller, K. (1937). Z. Kristallogr. 97, 170.CrossRefGoogle Scholar
Nagelschmidt, G. (1934). Z. Kristallogr. 87, 120.CrossRefGoogle Scholar
Nagelschmidt, G. (1937). Z. Kristallogr. 97, 514.CrossRefGoogle Scholar
Nagelschmidt, G. (1938). Miner. Mag. 25, 140.Google Scholar
Nahmias, H. E. (1932). Z. Kristallogr. 83, 329.CrossRefGoogle Scholar
Nahmias, H. E. (1933). Z. Kristallogr. 85, 319.CrossRefGoogle Scholar
Niggli, P. (1937). Z. Kristallogr. 97, 1.Google Scholar
Noll, W. (1936). Chem. d. Erde, 10, 129.Google Scholar
Noll, W. (1938). Ber. dtsch. keram. Ges. 19, 176.Google Scholar
Orcel, J. (1926). C.R. Acad. Sci., Paris, 183, 565.Google Scholar
Orcel, J. (1933). C.B. Acad. Sci., Paris, 192, 774.Google Scholar
Posnjak, E. & Merwin, H. E. (1919). Amer. J. Sci. 47, 311.CrossRefGoogle Scholar
Puri, A. N., Crowther, E. M. & Keen, B. A. (1925). J. agric. Sci. 15, 68.CrossRefGoogle Scholar
Puri, A. N. & Sarup, A. (1937). Soil Sci. 44, 87.CrossRefGoogle Scholar
Roborgh, R. H. J. & Kolkmeijer, N. H. (1936). Z. Kristallogr. 94, 74.CrossRefGoogle Scholar
Ross, C. S. & Kerr, P. F. (1930). Prof. Pap. U.S. geol. Surv. 165, 151.Google Scholar
Ross, C. S. & Kerr, P. F. (1934). Prof. Pap. U.S. geol. Surv. 185, 9.Google Scholar
Schachtschabel, P. (1937). Bodenk. u. PflErnähr. 5, 375.CrossRefGoogle Scholar
Schäfer, K. (1938). Z. Kristallogr. 99, 14.Google Scholar
Sedletzkij, I. D. (1938). C.R. Acad. Sci. U.R.S.S. 19, 721.Google Scholar
Thewlis, J. (1931). Phil. Mag. 12, 1089.CrossRefGoogle Scholar
Thiébaut, J. L. (1925). Bull. Soc. Sci. Nancy, Ser. IV, 5, 509.Google Scholar
Thomas, M. D. (1928). Soil Sci. 25, 409, 485.CrossRefGoogle Scholar
Truog, E., Taylor, J. R., Pearson, R. W., Weeks, M. E. & Simonson, R. W. (1937). Proc. Soil Sci. Soc. Amer. 1, 101.CrossRefGoogle Scholar
Vageler, P. (1938). Grundriss der Tropischen und Subtropischen Bodenkunde, 2nd ed. p. 76. Berlin.Google Scholar
Weiser, H. B. & Milligan, W. O. (1932). J. phys. Chem. 36, 3010.CrossRefGoogle Scholar
Wyckoff, R. G. W. (1922). Amer. J. Sci. 9, 448.Google Scholar