Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T19:07:43.428Z Has data issue: false hasContentIssue false

Climate change and land suitability for potato production in England and Wales: impacts and adaptation

Published online by Cambridge University Press:  14 November 2011

A. DACCACHE
Affiliation:
Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
C. KEAY
Affiliation:
Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
R. J. A. JONES
Affiliation:
Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
E. K. WEATHERHEAD
Affiliation:
Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
M. A. STALHAM
Affiliation:
Cambridge University Farm, Agronomy Centre, 219b Huntingdon Road, Cambridge CB3 0DL, UK
J. W. KNOX*
Affiliation:
Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
*
*To whom all correspondence should be addressed. Email: j.knox@cranfield.ac.uk

Summary

The viability of commercial potato production is influenced by spatial and temporal variability in soils and agroclimate, and the availability of water resources where supplementary irrigation is required. Soil characteristics and agroclimatic conditions greatly influence the cultivar choice, agronomic husbandry practices and the economics of production. Using the latest (UKCP09) scenarios of climate change for the UK, the present paper describes a methodology using pedo-climatic functions and a geographical information system (GIS) to model and map current and future land suitability for potato production in England and Wales. The outputs identify regions where rainfed production is likely to become limiting and where future irrigated production would be constrained due to shortages in water availability. The results suggest that by the 2050s, the area of land that is currently well or moderately suited for rainfed production would decline by 88 and 74%, respectively, under the ‘most likely’ climate projections for the low emissions scenario and by 95 and 86%, respectively, for the high emissions scenario, owing to increased likelihood of dry conditions. In many areas, rainfed production would become increasingly risky. However, with supplementary irrigation, c. 0·85 of the total arable land in central and eastern England would remain suitable for production, although most of this is in catchments where water resources are already over-licensed and/or over-abstracted; the expansion of irrigated cropping is thus likely to be constrained by water availability. The increase in the volume of water required due to the switch from rainfed- to irrigated-potato cropping is likely to be much greater than the incremental increase in water demand solely on irrigated potatoes. The implications of climate change on the potato industry, the adaptation options and responses available, and the uncertainty associated with the land suitability projections, are discussed.

Type
Climate Change and Agriculture
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. J. & Scott, R. K. (2001). BPC Research Review Potato Agronomy: The Agronomy of Effective Potato Production. Oxford, UK: British Potato Council.Google Scholar
Allen, R. G., Smith, M., Perrier, A. & Pereira, L. S. (1994). An update for the definition of reference evapotranspiration. ICID Bulletin 43, 134.Google Scholar
Brown, I., Towers, W., Rivington, M. & Black, H. I. J. (2009). Influence of climate change on agricultural land-use potential: adapting and updating the land capability system for Scotland. Climate Research 37, 4357.CrossRefGoogle Scholar
Bossard, M., Feranec, J. & Otahel, J. (2000). CORINE Land Cover Technical Guide: Addendum 2000. Technical Report No. 40. Copenhagen: European Environment Agency.Google Scholar
Charlton, M. B. & Arnell, N. W. (2011). Adapting to climate change impacts on water resources in England – an assessment of draft Water Resources Management Plans. Global Environmental Change 21, 238248.CrossRefGoogle Scholar
Collier, R., Fellows, J. R., Adams, S. R., Semenov, M. & Thomas, B. (2008). Vulnerability of horticultural crop production to extreme weather events. Aspects of Applied Biology 88, 314.Google Scholar
Cox, P. & Stephenson, D. (2007). A changing climate for prediction. Science 317, 207208.CrossRefGoogle ScholarPubMed
Daccache, A., Weatherhead, E. K., Stalham, M. A. & Knox, J. W. (2011). Impacts of climate change on irrigated potato production in a humid climate. Agricultural and Forest Meteorology 151, 16411653.CrossRefGoogle Scholar
Defra (2010). Fertiliser Manual (RB209), 8th edn. London: The Stationary Office.Google Scholar
De Silva, C. S., Weatherhead, E. K., Knox, J. W. & Rodriguez Diaz, J. A. (2007). Predicting the impacts of climate change – a case study of paddy irrigation water requirements in Sri Lanka. Agricultural Water Management 93, 1929.CrossRefGoogle Scholar
Downing, T. E., Butterfield, R. E., Edmunds, B., Knox, J. W., Moss, S., Piper, B. S. & Weathehread, E. K. (2003). Climate Change and the Demand for Water, Research Report. Oxford, UK: Stockholm Environment Institute Oxford Office.Google Scholar
Durrant, M. J., Love, B. J. G., Messem, A. B. & Draycott, A. P. (1973). Growth of crops in relation to soil moisture extraction. Annals of Applied Biology 74, 387394.CrossRefGoogle Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
ENVIRONMENT AGENCY (2010). Managing Water Abstraction. Bristol, UK: The Environment Agency.Google Scholar
Ewert, F., Rounsevell, M. D. A., Reginster, I., Metzger, M. J. & Leemans, R. (2005). Future scenarios of European agricultural land use. I. Estimating changes in crop productivity. Agriculture, Ecosystems and Environment 107, 101116.CrossRefGoogle Scholar
FAO (1976). A Framework for Land Evaluation. FAO Soils Bulletin 32. Rome: FAO.Google Scholar
Fischer, G., Shah, M., Tubiello, F. N. & Van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 20672083.CrossRefGoogle ScholarPubMed
Hall, D. G. M., Reeve, M. J., Thomasson, A. J. & Wright, V. F. (1977). Water Retention, Porosity and Density of Field Soils. Soil Survey Technical Monograph No. 9. Harpenden, UK: Soil Survey of England and Wales.Google Scholar
Hallett, S. H. & Jones, R. J. A. (1993). Compilation of an accumulated temperature database for use in an environmental information system. Agricultural and Forest Meteorology 63, 2134.CrossRefGoogle Scholar
Hallett, S. H., Jones, R. J. A. & Keay, C. A. (1996). Environmental information systems developments for planning sustainable land use. International Journal of Geographical Information Science 10, 4764.Google Scholar
Hess, T. M., Knox, J. W., Kay, M. G. & Weatherhead, E. K. (2010). Managing the water footprint of irrigated food production in England and Wales. In Sustainable Water. Issues in Environmental Science and Technology, vol. 31 (Eds Hester, R. E. & Harrison, R. M.), pp. 7892. Cambridge, UK: Royal Society of Chemistry.Google Scholar
Hood, A., Cechet, B., Hossain, H. & Sheffield, K. (2006). Options for Victorian agriculture in a ‘new’ climate: pilot study linking climate change and land suitability modelling. Environmental Modelling and Software 21, 12801289.CrossRefGoogle Scholar
Jenkins, G. J., Murphy, J. M., Sexton, D. M. H., Lowe, J. A., Jones, P. & Kilsby, C. G. (2009). UK Climate Projections: Briefing Report. Exeter, UK: Met Office Hadley Centre.Google Scholar
Jones, R. J. A., Hiederer, R., Rusco, E. & Montanarella, L. (2005). Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science 56, 655671.CrossRefGoogle Scholar
Jones, R. J. A. & Thomasson, A. J. (1985). An Agroclimatic Databank for England and Wales. Soil Survey Technical Monograph No. 16. Harpenden, UK: Soil Survey of England and Wales.Google Scholar
Jones, R. J. A. & Thomasson, A. J. (1987). Land suitability classification for temperate arable crops. In Quantified Land Evaluation Procedures (Eds Beek, K. J., Burrough, P. A. & McCormack, D. E.), pp. 2935. Enschede, The Netherlands: ITC Publication.Google Scholar
Jones, R. J. A. & Thomasson, A. J. (1993). Effects of soil-climate-system interactions on the sustainability of land use: a European perspective. In Utilization of Soil Survey Information for Sustainable Land Use. Proceedings of the Eighth International Soil Management Workshop, 3 May 1993 (Ed. Kimble, J. M.), pp. 3952. Washington, DC: USDA Soil Conservation Service, National Soil Survey.Google Scholar
Kapsa, J. S. (2008). Important threats in potato production and integrated pathogen/pest management. Potato Research 51, 385401.CrossRefGoogle Scholar
Keay, C. A., Hallett, S. H., Farewell, T. S., Rayner, A. P. & Jones, R. J. A. (2009). Moving the national soil database for England and Wales towards INSPIRE compliance. International Journal of Spatial Data Infrastructures Research 4, 134155.Google Scholar
Knox, J. W., Morris, J. & Hess, T. M. (2010b). Identifying the future risks to UK agricultural crop production – putting climate change in context. Outlook on Agriculture 39, 249256.CrossRefGoogle Scholar
Knox, J. W., Rodriguez-Diaz, J. A., Weatherhead, E. K. & Kay, M. G. (2010a). Development of a water strategy for horticulture in England and Wales. Journal of Horticultural Science and Biotechnology 85, 8993.CrossRefGoogle Scholar
Knox, J. W., Rodríguez Díaz, J. A., Nixon, D. J. & Mkhwanazi, M. (2010c). A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agricultural Systems 103, 6372.CrossRefGoogle Scholar
Knox, J. W., Weatherhead, E. K., Rodriguez-Diaz, J. A. & Kay, M. G. (2009). Developing a strategy to improve irrigation efficiency in a temperate climate: a case study in England. Outlook on Agriculture 38, 303309.CrossRefGoogle Scholar
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607610.CrossRefGoogle ScholarPubMed
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J. & Zhao, Z. (2007). Supplementary materials: global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.), pp. SM.10-1–SM.10-8. Cambridge, UK: Cambridge University Press.Google Scholar
MINISTRY OF AGRICULTURE, FISHERIES AND FOOD (1988). Agricultural Land Classification of England and Wales. Revised Guidelines and Criteria for Grading the Quality of Agricultural Land. London, UK: MAFF. Available online at http://archive.defra.gov.uk/foodfarm/landmanage/land-use/ (verified 11 Sep 2011).Google Scholar
Nakicenovic, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., Van Rooijen, S., Victor, N. & Dadi, Z. (2000). IPCC Special Report on Emissions Scenarios. Cambridge, UK: Cambridge University Press.Google Scholar
Olesen, J. E. & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16, 239262.CrossRefGoogle Scholar
Onder, S., Caliskan, M. E., Onder, D. & Caliskan, S. (2005). Different irrigation methods and water stress effects on potato yield and yield components. Agricultural Water Management 73, 7386.CrossRefGoogle Scholar
Opena, G. B. & Porter, G. A. (1999). Soil management and supplemental irrigation effects on potato. II. Root growth. Agronomy Journal 91, 426431.CrossRefGoogle Scholar
POTATO COUNCIL (2010). Production and Price Trends 1960–2009. August 2010 Edition. Kenilworth, UK: Agriculture & Horticulture Development Board.Google Scholar
Rodríguez Díaz, J. A., Weatherhead, E. K., Knox, J. W. & Camacho, E. (2007). Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Regional Environmental Change 7, 149159.CrossRefGoogle Scholar
Rounsevell, M. D. A. & Jones, R. J. A. (1993). A soil and agroclimatic model for estimating machinery workdays: Part I – The basic model and climatic sensitivity. Soil and Tillage Research 26, 179191.CrossRefGoogle Scholar
Sexton, D. M. H., Harris, G. & Murphy, J. (2010). UKCP09: Spatially Coherent Projections: UKCP09 Additional Product. Exeter, UK: Met Office Hadley Centre. Available online at: http://ukclimateprojections.defra.gov.uk/images/stories/Tech_notes/UKCP09_SCPs.pdf (verified 11 Sep 2011).Google Scholar
Shock, C. C., Zalewski, J. C., Stieber, T. D. & Burnett, D. S. (1992). Impact of early-season water deficits on Russet Burbank plant development, tuber yield and quality. American Journal of Potato Research 69, 793803.CrossRefGoogle Scholar
Siddons, P. A., Jones, R. J. A., Hollis, J. M., Hallett, S. H., Huyghe, C., Day, J. M., Scott., T. & Milford, G. F. J. (1994). The use of a land suitability model to predict where autumn-sown determinate genotypes of the white lupin (Lupinus albus) might be grown in England and Wales. Journal of Agricultural Science, Cambridge 123, 199205.CrossRefGoogle Scholar
SOIL SURVEY (1983). Soil Map of England and Wales (6 map sheets), scale 1:250000. Southampton, UK: Lawes Agricultural Trust (Soil Survey of England and Wales).Google Scholar
Stalham, M. A. & Allen, E. J. (2001). Effect of variety, irrigation regime and planting date on depth, rate, duration and density of root growth in the potato (Solanum tuberosum) crop. Journal of Agricultural Science, Cambridge 137, 251270.CrossRefGoogle Scholar
Stalham, M. A., Allen, E. J., Rosenfeld, A. B. & Herry, F. X. (2007). Effects of soil compaction in potato (Solanum tuberosum) crops. Journal of Agricultural Science, Cambridge 145, 295312.CrossRefGoogle Scholar
Thomasson, A. J. (1979). Assessment of soil droughtiness. In Soil Survey Applications (Eds Jarvis, M. G. & Mackney, D.), pp. 4350. Soil Survey Technical Monograph No. 13. Harpenden, UK: Soil Survey of England and Wales.Google Scholar
Thomasson, A. J. (1982). Soil and climatic aspects of workability and trafficability. In Proceedings of the 9th Conference of the International Soil Tillage Research Organization, pp. 551557. Osijek, Yugoslavia: ISTRO.Google Scholar
Thomasson, A. J. & Jones, R. J. A. (1989). Mapping soil trafficability in the UK by computer. In Agriculture: Computerization of Land Use Data (Eds Jones, R. J. A. & Biagi, B.), pp. 97109. EUR 11151 EN. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Thomasson, A. J. & Jones, R. J. A. (1991). An empirical approach to crop modelling and the assessment of land productivity. Agricultural Systems 37, 351367.CrossRefGoogle Scholar
Tompkins, E. L., Adger, W. N., Boyd, E., Nicholson-Cole, S., Weatherhead, K. & Arnell, N. (2010). Observed adaptation to climate change: UK evidence of transition to a well-adapting society. Global Environmental Change 20, 627635.CrossRefGoogle Scholar
Trnka, M., Eitzinger, J., Dubrovský, M., Semerádová, D., Štěpánek, P., Hlavinka, P., Balek, J., Skalák, P., Farda, A., Formayer, H. & Žalud, Z. (2010). Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, Cambridge 148, 639656.CrossRefGoogle Scholar
Verheijen, F. G. A., Bellamy, P. H., Kibblewhite, M. G. & Gaunt, J. L. (2005). Organic carbon ranges in arable soils of England and Wales. Soil Use and Management 21, 29.CrossRefGoogle Scholar
Weatherhead, E. K. & Howden, N. J. K. (2009). The relationship between land use and surface water resources in the UK. Land Use Policy 26 (Suppl. 1), S243S250.CrossRefGoogle Scholar
Weatherhead, E. K. (2006). Survey of Irrigation of Outdoor Crops in 2005 – England and Wales. Cranfield, UK: Cranfield University.Google Scholar
Winter, M. (2009). Agricultural land use in the era of climate change: the challenge of finding ‘Fit for Purpose’ data. Land Use Policy 26 (Suppl. 1), S217S221.CrossRefGoogle Scholar