Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T21:04:20.308Z Has data issue: false hasContentIssue false

Effect of nitrogen rates on rice growth and biological nitrogen fixation

Published online by Cambridge University Press:  27 March 2009

R. Carreres
Affiliation:
Departamento del Arroz, Instituto Valenciano de Investigaciones Agrarias, Sueca, 46410-Valencia, Spain
R. González Tomé
Affiliation:
Departamento del Arroz, Instituto Valenciano de Investigaciones Agrarias, Sueca, 46410-Valencia, Spain
J. Sendra
Affiliation:
Departamento del Arroz, Instituto Valenciano de Investigaciones Agrarias, Sueca, 46410-Valencia, Spain
R. Ballesteros
Affiliation:
Departamento del Arroz, Instituto Valenciano de Investigaciones Agrarias, Sueca, 46410-Valencia, Spain
E. Fernández Valiente
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, 28049-Madrid, Spain
A. Quesada
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, 28049-Madrid, Spain
M. Nieva
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, 28049-Madrid, Spain
F. Leganés
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, 28049-Madrid, Spain

Summary

The effect of different rates (0–140 kg/ha) of nitrogen fertilizers on soil cyanobacteria and rice crop performance were studied in a rice-cropping system on an alkaline Fluvent soil at Valencia, Spain, during three consecutive crop seasons (1990–92). The results showed that the rice fields of Valencia favour the development of N2-fixing cyanobacteria. Nitrogen fixation varied during the cultivation cycle, reaching its highest values at the maximum tillering stage, 5–6 weeks after sowing, and showed a positive correlation with the abundance of cyanobacteria and a negative correlation with the amount of N fertilizers used. Grain yield increased with increasing amounts of N fertilizers up to 70 kg N/ha. N rates appeared to affect grain yield by causing variations in the number of panicles/m2. Leaf chlorophyll readings at the end of the tillering stage were positively correlated with the number of panicles/m2, suggesting that it could be a useful parameter for predicting productivity. There was a significant increase in the N uptake of the rice but a decrease in the apparent N recovery and Nuse efficiency of applied fertilizer N, with the application of increasing rates of N fertilizer. In all instances, except in plots fertilized with 140 kg N/ha, the amount of N removed by plants was significantly higher than that applied as N fertilizer. The differences were positively correlated with the values for N fixation, suggesting a significant contribution by N fixation to rice production. These results show that a rational use of biological N fixation, in combination with inorganic N fertilization, would permit the input of N fertilizers to be reduced by c. 50% without any significant loss of productivity and with an ecological benefit for the whole ecosystem.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ballesteros, L., de la Guardia, M. & Vicente, E. (1988). La presencia de nitratos en las aguas del ecosistema de la Albufera de Valencia. Revista de Agroquímica y Tecnologia de Alimentos 28, 574580.Google Scholar
Forès, E. (1992). Nutrient loading and drainage channel response in a ricefield system. Hydrobiologia 230, 193200.CrossRefGoogle Scholar
González, M. & Ramírez, C. (1991). Response of rice to nitrogen fertilization in rotation with sorghum and soybeans. Agronomía Costarricense 15, 143149.Google Scholar
Jongkaewwattana, S. & Geng, S. (1991). Effect of nitrogen and water management on panicle development and milling quality of California rice. Journal of Agronomy and Crop Science 167, 4352.CrossRefGoogle Scholar
Joseph, K. D. S. M. (1992). Physiological and agronomic aspects of rice varietal responses to low and high nitrogen management. Dissertation Abstracts International B, Sciences and Engineering 52, 5589 B (Abstract of Thesis, Virginia Polytechnic Institute and State University.Google Scholar
Leganés, F. & Fernández Valiente, E. (1991). The relationship between the availability of external CO2 and nitrogenase activity in the cyanobacterium Nostoc UAM 205. Journal of Plant Physiology 139, 135139.CrossRefGoogle Scholar
Mahapatra, I. C., Mudholkar, N. J. & Patnaik, H. (1971). Effect of N, P and K. fertilizers on the prevalence of algae under field conditions. Indian Journal of Agronomy 16, 1922.Google Scholar
Mateo, P., Bonilla, I., Fernández Valiente, E. & Sánchez Maeso, E. (1986). Essentiality of boron for dinitrogen fixation in Anabaena sp. PCC 7119. Plant Physiology 81, 430433.CrossRefGoogle ScholarPubMed
Matsushima, S. (1967). Crop Science in Rice. Theory of Yield Determination and its Application. Tokyo: Fuji Publishing Co.Google Scholar
Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Department of Agriculture, Specification 939.Google Scholar
Prosperi, C., Boluda, L., Luna, C. & Fernández Valiente, E. (1992). Environmental factors affecting in vitro nitrogenase activity of cyanobacteria isolated from ricefields. Journal of Applied Phycology 4, 197204.CrossRefGoogle Scholar
Quesada, A. (1990). Estudio de las poblaciones naturales de cianobacterias presentes en los arrozales valencianos. PhD thesis, Universidad Autónoma de Madrid.Google Scholar
Quesada, A., Sánchez Maeso, E. & Fernández Valiente, E. (1989). New incubation device for in situ measurement of acetylene reduction activity in rice fields. Journal of Applied Phycology 1, 195200.CrossRefGoogle Scholar
Quesada, A., Sánchez Maeso, E. & Fernández Valiente, E. (1991). Nitrogen fixation in Spanish ricefields. In Nitrogen Fixation (Eds Polsinelli, M., Materassi, R. & Vincenzini, M.), pp. 535536. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Reynaud, P. A. & Roger, P. A. (1979). Les hautes intensités lumineuses, facteur limitant l'activité fixatrice d'azote des cyanobacteries. Comptes Rendues des Séances de L'Academie de Sciences, Pan's (Serie D) 288, 9991002.Google Scholar
Rinaudo, G. (1974). Fixation biologique de l'azote dans trois types de sols de rizières de Côte d'Ivoire. Revue d' Écologie et de Biologie du Sol 11, 149168.Google Scholar
Roger, P. A. & Kulasooriya, S. A. (1980). Blue-Green Algae and Rice. Los Baños, Filipinas: IRRI.Google Scholar
Roger, P. A., Remulla, R. & Watanabe, I. (1984). Effect of urea on the N2-fixing algal flora in lowland rice at ripening stage. International Rice Research Newsletter 9(2), 28.Google Scholar
Roger, P. A., Zimmerman, W. J. & Lumpkin, T. A. (1993). Microbiological management of wetland rice fields. In Soil Microbial Ecology (Ed. Metting, F. B.), pp. 417455. New York: Marcel Dekker.Google Scholar
Rother, J. A. & Whitton, B. A. (1989). Nitrogenase activity of blue-green algae on seasonally flooded soils in Bangladesh. Plant and Soil 113, 4752.CrossRefGoogle Scholar
Sader, R., Pedroso, P. A. C., Epifania, L. C., Gavioli, E. A. & Mattos, J. D. (1990). Effects of nitrogen fertilizer on chlorophyll contents, yield and seed quality of rice. Científica 18, 6369.Google Scholar
Sendra, J., Carreres, R., Pomares, F., Estela, M. & Tarazona, F. (1993). Efecto de la fertilizatión nitrogenada, fosforada y potásica sobre el rendimiento y el desarrollo vegetativo del arroz en Valencia. Investigación Agraria 8, 221234.Google Scholar
Shiga, H., Kakimoto, A., Doi, Y., Awasaki, H., Miyake, M., Sekiya, S. & Kataoka, T. (1971). Environment and characteristics of rice plants in high yielding paddy fields in Hokkaido. Cited in ‘Importance of nitrogen for rice production’ (Murayama, N.), in Nitrogen and Rice. Los Baños, Philippines: IRRI.Google Scholar
Trolldenier, G. (1987). Estimation of associative nitrogen fixation in relation to water regime and plant nutrition in a long-term pot experiment with rice (Oryza saliva L.). Biology and Fertility of Soils 5, 133140.CrossRefGoogle Scholar
Turner, F. T. & Jund, M. F. (1991). Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agronomy Journal 83 926928.CrossRefGoogle Scholar
United States Department of Agriculture (1975). Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Agricultural Handbook No. 436, Soil Conservation Service, USDA.Google Scholar
Yanagisawa, M. & Takahashi, J. (1964). Studies on the factors related to the productivity of paddy soils in Japan with special reference to the nutrition of the rice plant. Bulletin of the National Institute of Agricultural Sciences B 14, 41171.Google Scholar