Published online by Cambridge University Press: 27 March 2009
The wool production of pregnant, lactating and non-pregnant, non-lactating (dry) Merino ewes eating one of three diets: chaffed oaten hay (OH), chaffed lucerne hay (LH), and a 50/50 (w/w) mixture of OH and LH, was determined. Measurements were made for 2 months prior to mating, during pregnancy and for 3 months after lambing, and for the dry ewes over the same period.
Production of clean wool (Y, g/day) by dry ewes was linearly related to digestible organic matter intake (X, g/day):
Y = 0·0301 X - 3·34, r = 0·97.
Clean wool growth was significantly less (P < 0·01) than dry ewes in the 4th and 5th month of pregnancy and throughout lactation. During pregnancy the total deficit in clean wool growth (calculated as the difference between observed wool growth and that expected on the basis of the relationship between feed intake and clean wool growth of dry ewes) was 456 g for ewes bearing a single lamb and 578 g for those bearing twins, with no difference between diets. In lactation the total clean wool growth deficit increased as milk production increased, and for every litre of milk produced there was a deficit of 12 g clean wool.
Wool fibre diameter was reduced during the 1st month of lactation. There was no consistent effect of pregnancy or lactation on the number of wool follicles per mm2, the ratio of primary plus secondary to primary wool follicles, or on the thickness of skin on the midside.
Digestibility of dietary organic matter (DOM) was reduced during the last 3 months of pregnancy, and the first 2 months of lactation. However, this was insufficient to account for the magnitude of the decrease in wool growth seen during pregnancy and lactation.
Wool sulphur content increased during pregnancy (P < 0·001), but not during lactation. The relationship between total plasma cyst(e)ine concentration and DOM intake during pregnancy was similar to that in dry ewes, but during lactation total plasma cyst(e)ine concentration was less than expected. It was calculated that during pregnancy the amount of sulphur saved through reduced wool growth was greater than that deposited in the conceptus, and during lactation the amount of sulphur saved in reduced wool growth matched that excreted as milk.
These results are discussed in relation to control of wool growth during pregnancy and lactation.