Published online by Cambridge University Press: 14 July 2016
This paper investigates the probabilistic behaviour of the eigenvalue of the empirical transition matrix of a Markov chain which is of largest modulus other than 1, loosely called the second-largest eigenvalue. A central limit theorem is obtained for nonmultiple eigenvalues of the empirical transition matrix. When the Markov chain is actually a sequence of independent observations the distribution of the second-largest eigenvalue is determined and a test for independence is developed. The independence case is considered in more detail when the Markov chain has only two states, and some applications are given.