Article contents
On exact sampling of stochastic perpetuities
Published online by Cambridge University Press: 14 July 2016
Abstract
A stochastic perpetuity takes the form D∞=∑n=0∞ exp(Y1+⋯+Yn)Bn, where Yn:n≥0) and (Bn:n≥0) are two independent sequences of independent and identically distributed random variables (RVs). This is an expression for the stationary distribution of the Markov chain defined recursively by Dn+1=AnDn+Bn, n≥0, where An=eYn; D∞ then satisfies the stochastic fixed-point equation D∞D̳AD∞+B, where A and B are independent copies of the An and Bn (and independent of D∞ on the right-hand side). In our framework, the quantity Bn, which represents a random reward at time n, is assumed to be positive, unbounded with EBnp <∞ for some p>0, and have a suitably regular continuous positive density. The quantity Yn is assumed to be light tailed and represents a discount rate from time n to n-1. The RV D∞ then represents the net present value, in a stochastic economic environment, of an infinite stream of stochastic rewards. We provide an exact simulation algorithm for generating samples of D∞. Our method is a variation of dominated coupling from the past and it involves constructing a sequence of dominating processes.
MSC classification
- Type
- Part 4. Simulation
- Information
- Journal of Applied Probability , Volume 48 , Issue A: New Frontiers in Applied Probability (Journal of Applied Probability Special Volume 48A) , August 2011 , pp. 165 - 182
- Copyright
- Copyright © Applied Probability Trust 2011
References
- 14
- Cited by