Published online by Cambridge University Press: 14 July 2016
This paper is concerned with the determination of the optimal release rate for a continuous storage system. The input to the store is assumed to be a compound Poisson process (with non-negative jumps), and its content is released either at a constant rate or at a linear rate. Rewards are collected at an output-dependent rate and are continuously discounted at a constant rate. The problem consists in finding the optimal release rate which maximizes the infinite-horizon expected discounted return. This problem is solved by deriving an explicit solution for the expected discounted return, from which the optimal release rate can be found.