Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T01:06:20.028Z Has data issue: false hasContentIssue false

Appearance of contraceptive steroids in human milk: effects on the child

Published online by Cambridge University Press:  27 September 2011

J. K. Harfouche
Affiliation:
Department of Community Health Practice, School of Public Health, American University, Beirut, Lebanon

Summary

The realization that steroidal contraceptives administered immediately after delivery to lactating women may be excreted into milk, and adversely affect the neonate, is a cause for concern. Most investigations on hormonal contraceptives have dealt with the efficacy of ovulation suppression, and systemic side effects, but little is known about the appearance of steroids or their metabolites in milk. Apart from the immediate side effects on the neonate, unforeseen long-term consequences require special consideration. Until research provides us with more information, women should use breast-feeding and IUDs instead of steroidal contraceptives during the first trimester post-partum.

Type
IV. Steroid contraception during lactation
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarskog, D. (1971) Birth defects. Original article ser. 7. No. 6.Google Scholar
Adlard, B.P.F. & Lathe, G.H. (1970) Breast milk jaundice: effect of 3α-20β-pregnanediol on bilirubin conjugation by human liver. Archs Dis. Childh. 45, 186.CrossRefGoogle ScholarPubMed
Arias, I.M. & Gartner, L.M. (1964) Production of unconjugated hyperbilirubinaemia in full-term new-born infants following administration of pregnane-3α,20β-diol. Nature, Lond. 203, 1292.CrossRefGoogle Scholar
Arias, I.M., Seifter, S. & Furman, M. (1964) Prolonged neonatal unconjugated hyperbilirubinemia associated with breast feeding and a steroid, pregnane-3α,20β-diol in maternal milk that inhibits glucuronide formation in vitro. J. clin. Invest. 43, 2037.CrossRefGoogle Scholar
Bahgat, M.R., Atkinson, L.E., Brinson, A.O. & Segal, S.J. (1975) Treatment of post-partum rhesus monkeys with progestogen: appearance in milk and effects on lactation. Contraception, 12, 665.CrossRefGoogle ScholarPubMed
Barnardo, D., Stothers, I. & Sharratt, M. (1972) Breast-milk jaundice and the pill. Br. med. J. 2, 348.CrossRefGoogle ScholarPubMed
Beuselinck, A. (1967) Klinische resultaten bekomen met het 6α-methyl-17α-ethinyl oestrenol tijdens volledige borstvoeding. Bull. Soc. r. belge. Gynecol. Obstet. 37, 365.Google Scholar
Buchanan, R. (1975) Breast-Feeding: an Aid to Infant Health and Fertility Control. Population Reports, Ser. J, 49. George Washington University Medical Centre, Washington, DC.Google ScholarPubMed
Catz, C.S. & Giacoia, G.P. (1972) Drugs and breast milk. Pediat. Clins N. Am. 19, 151.CrossRefGoogle ScholarPubMed
Chinnatamby, S. (1967) Effects of oral contraception on lactation. In: Proceedings of the Eighth International Conference of the IPPF, p. 263. Santiago, Chile, 1967. IPPF, London.Google Scholar
Chopra, J.G. (1972) Effect of steroid contraceptives on lactation. Am. J. clin. Nutr. 25, 1202.CrossRefGoogle ScholarPubMed
Gallagher, T.F., Bradlov, H.L., Fukushima, D.K., Beer, C.T., Kritchevsky, T.H., Stokem, M., Wisinodd, M.L., Hellman, L. & Dobriner, K. (1954) Studies of the metabolites of isotopic steroid hormones in man. Rec. Prog. Horm. Res. 9, 411.Google Scholar
Gassner, F.X., Martin, R.P., Shimoda, W. & Algeo, J.W. (1960) Metabolism of radioactive steroid esters in the bovine male and female. Fert. Steril. 11, 49.CrossRefGoogle ScholarPubMed
Gonzalez, C. (1970) Microdosis continua de clormadinona durante la lactancia (Continuous microdoses of chlormadinone during lactation). Ginec. Obstet. Mex. 28, 563.Google ScholarPubMed
Goodman, L.S. & Gilman, A. (Eds.) (1970) The Pharmacological Basis of Therapy, 4th edn, p. 160. Macmillan, New York.Google Scholar
Hadjimarkos, D.M. & Shearer, T.R. (1973) Selenium in mature human milk. Am. J. clin. Nutr. 26, 583.CrossRefGoogle ScholarPubMed
Hefnawi, F., Fawzi, G., Badraoui, M.H.H., Kader, N.H.A. & Bahgat, M.H. (1970) Attempts to select a suitable hormonal contraceptive during lactation. In: Proc. 6th World Congress of Obstetrics and Gynecology, New York. Williams & Wilkins, Baltimore.Google Scholar
Herbst, A.L., Ulfelder, H. & Poskanzer, D.C. (1971) Adenocarcinoma of the vagina; association of maternal stilbestrol therapy with tumor appearance in young women. New Engl. J. Med. 284, 878.CrossRefGoogle ScholarPubMed
Hytten, F.E. (1954a) Clinical and chemical studies in human lactation. II. Variation in major constituents during a feeding. Br. med. J. 1, 176.Google Scholar
Hytten, F.E. (1954b) Clinical and chemical studies in human lactation. III. Diurnal variation in major constituents of milk. Br. med. J. 1, 179.Google Scholar
Hytten, F.E. & Thomson, A.M. (1961) Nutrition of the lactating woman. In: Milk: the Mammary Gland and its Secretion, Vol. II. Chap. 13. Edited by Kon, S. K. and Cowie, A. T.. Academic Press, New York.Google Scholar
Kaern, T. (1967) Effect of an oral contraceptive immediately postpartum on initiation of lactation. Br. med. J. 3, 644.CrossRefGoogle ScholarPubMed
Kamal, I., Hefnawi, F., Ghoneim, M., Talaat, M., Younis, N., Tagui, A. & Abdaixa, M. (1969) Clinical, biochemical, and experimental studies on lactation. II. Clinical effects of gestagens on lactation. Am. J. Obstet. Gynec. 105, 324.CrossRefGoogle ScholarPubMed
Karim, M., et al. (1971) Injected progestogen and lactation. Br. med. J. 1, 200.CrossRefGoogle ScholarPubMed
Kaufman, R.L. (1973) Birth defects and oral contraceptives. Lancet, i, 940.Google Scholar
Koetsawang, S., Bhiraleus, P. & Chiemprajert, T. (1972) Effects of oral contraceptives on lactation. Fert. Steril. 23, 24.CrossRefGoogle ScholarPubMed
Lathe, G.H. & Walker, M. (1958) Inhibition of bilirubin conjugation in rat liver slices by human pregnancy and neonatal serum and steroids. Q. J. exp. Physiol. 43, 275.Google ScholarPubMed
Laumas, R.K., Malkani, P.K., Bhatnagar, S. & Laumas, V. (1967) Radioactivity in the breast milk of lactating women after oral administration of 3H norethynodrel. Am. J. Obstet. Gynec. 98, 411.CrossRefGoogle ScholarPubMed
Lunaas, T. (1963) Transfer of oestradiol-17β to milk in cattle Nature, Lond. 198, 288.CrossRefGoogle ScholarPubMed
Mayer, G. & Klein, M. (1961) Histology and cytology of the mammary gland. In: Milk: the Mammary Gland and its Secretion, Vol. 1. p. 99. Edited by Kon, S. K. and Cowie, A. T., Academic Press, New York.Google Scholar
Miller, G. & Hughes, L. (1970) Lactation and genital involution effects of a new low dose oral contraceptive on breast-feeding mothers and their infants. Obstet. Gynec. N. Y. 35, 44.Google ScholarPubMed
Newman, A.J. & Gross, S. (1963) Hyperbilirubinemia in breast-fed infants. Pediatrics, N.Y. 32, 995.Google ScholarPubMed
Nora, J.J. & Nora, A.H. (1973) Birth defects and oral contraceptives. Lancet, i, 941.CrossRefGoogle Scholar
Pincus, G., Bialy, G., Layne, D.S. & Paniagua, M. (1966) Radioactivity in the milk of subjects receiving radioactive 19 norsteroids. Nature, Lond. 212, 924.CrossRefGoogle ScholarPubMed
Potts, M., Van der Vlugt, T., Piotrow, P.T., Gail, L.J. & Huber, S.C. (1975) Advantages of Orals Outweigh Disadvantages. Population Reports. Ser. A. (2), p. 23. George Washington University Medical Centre, Washington, DC.Google ScholarPubMed
Rane, A. & Sjögvist, F. (1972) Drug metabolism in the human fetus and newborn infant. Pediat. Clins N. Am. 19, 37.CrossRefGoogle ScholarPubMed
Rasmussen, F. (1961) Mammary excretion of antipyrine, ethanol and urea. Acta vet. scand. 2, 151.CrossRefGoogle Scholar
Reynolds, M. (1969) Relationship of mammary circulation and oxygen consumption to lactogenesis. In: Lactogenesis: the Initiation of Milk Secretion at Parturition. University of Pennsylvania Press, Philadelphia.CrossRefGoogle Scholar
Riegel, B., Hartop, W.L. Jr & Kittinger, G.W. (1950) Studies on the metabolism of radioprogesterone in mice and rats. Endocrinology, 47, 311.CrossRefGoogle Scholar
Sandberg, A.A. & Slaunwhite, W.R. (1958) The metabolic rate of C14-progesterone in human subjects. J. clin. Endocr. Metab. 18, 253.CrossRefGoogle Scholar
Semm, K. (1966) Social and Medical Aspects of Oral Contraception, p. 88. Excerpta Medica Foundation, Princeton, NJ.Google Scholar
Thaler, M.M. (1972) Perinatal bilirubin metabolism. Adv. Pediat. 19, 215.CrossRefGoogle Scholar
Van der Molen, H.J., Hart, P.G. & Wijmenga, H.G. (1969) Studies with 4-14C-lynestrenol in normal and lactating women. Acta endocr. Copenh. 61, 255.Google ScholarPubMed
West, J.R., Smith, H.W. & Chasis, H. (1948) Glomerular filtration rate, effective renal blood flow, and maximal tubular excretory capacity in infancy. J. Pediat. 31, 10.CrossRefGoogle Scholar
Wijmenga, H.G. & Van der Molen, J.H. (1969) Studies with 4-14C-mestranol in lactating women. Acta endocr., Copenh. 61, 665.Google ScholarPubMed
Wilkins, L., Jones, H.W. Jr, Holman, C.H. & Stempfel, R.S. Jr (1958) Masculinization of the female fetus associated with administration of oral and intramuscular progestins during gestation: non-adrenal female pseudo-hermaphrodism. J. clin. Endocr. Metab. 18, 559.CrossRefGoogle Scholar
Williams, W.F. (1962) Excretion of progesterone and its metabolites in milk, urine and faeces. J. Dairy Sci. 45, 1541.CrossRefGoogle Scholar
Wong, Y.K. & Wood, B.S.B. (1971) Breast-milk jaundice and oral contraceptives. Br. med. J. 4, 403.CrossRefGoogle ScholarPubMed