Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T16:12:25.138Z Has data issue: false hasContentIssue false

2476

Identifying strangulated small bowel obstruction with machine learning

Published online by Cambridge University Press:  10 May 2018

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/SPECIFIC AIMS: Historically, logistic regression algorithms (LRAs) have failed to differentiate strangulated small bowel obstructions (SBOs) from nonstrangulated SBOs. Our hypothesis is that a machine learning algorithm (MLA) can differentiate strangulated from simple SBOs better than an LRA can. METHODS/STUDY POPULATION: We used records of patients presenting with acute SBO and managed with exploratory laparotomy to test and train algorithms. We compared MLA to LRA via area under the receiver operating characteristic curve (AUROC) and cut-off points maximizing sensitivity and specificity. RESULTS/ANTICIPATED RESULTS: With 192 patient records, the AUROC of the MLA was 0.85. At the sensitivity cutoff, the MLA had 100% sensitivity and 55% specificity. At the specificity cutoff, the MLA had 45% sensitivity and 100% specificity. We anticipate improvements as more records are incorporated, and that LRA will underperform MLA across all measures. DISCUSSION/SIGNIFICANCE OF IMPACT: Our MLA represents a significant improvement over past LRAs, and may provide decision assistance to surgeons managing SBO. If this MLA maintains its high sensitivity, it may be used in the future to prevent unnecessary surgeries.

Type
Biomedical Informatics/Health Informatics
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Association for Clinical and Translational Science 2018