Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T03:46:27.478Z Has data issue: false hasContentIssue false

554. Titration curves of whey constituents*

Published online by Cambridge University Press:  01 June 2009

M. Boulet
Affiliation:
Division of Applied Biology, National Research Council, Ottawa, Canada

Extract

Titration curves of calcium-containing and calcium-free solutions resembling milk serum indicated that precipitation of calcium from such solutions was greatly impeded by citrate. In the absence of citrate, precipitation of tricalcium phosphate was complete at pH 6·0, but, in solutions containing citrate, precipitation of tricalcium phosphate occurred gradually throughout the titration and was not complete at pH 10.

In some solutions precipitation of calcium phosphate ceased at about pH 9·7, even though the base added had been insufficient to neutralize tertiary hydrogen equivalent to the known calcium content. Precipitation of dicalcium phosphate must therefore have occurred.

The observed stability of calcium in these solutions was much greater than that predicted from the accepted solubility and dissociation constants. It is therefore concluded that detailed studies of these constants, and of the factors controlling precipitation of dior tricalcium phosphate, are needed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Eilers, H., Saal, R. N. J. & Waarden, M. van der (1947). Monographs on the Progress of Research in Holland. Chemical and Physical Investigations on Dairy Products. Amsterdam: Elsevier Publishing Co.Google Scholar
(2)Harland, H. A. & Ashworth, V. S. (1945). J. Dairy Sci. 28, 879.Google Scholar
(3)Hastings, A. B., Mclean, F. C., Eichelberger, L., Hall, J. L. & DaCasta, E. (1934). J. biol. Chem. 107, 351.CrossRefGoogle Scholar
(4)Hentola, V. (1952). Chem. Abstr. 44, 5192.Google Scholar
(5)Hoffman, W. F. & Gortner, R. A. (1925). J. phys. Chem. 29, 769.CrossRefGoogle Scholar
(6)Holland, R. F. & Dahlberg, A. C. (1940). Tech. Bull. N.Y. St. agric. Exp. Sta. no. 254.Google Scholar
(7)Holt, L. E., LaMer, V. K. & Chown, H. B. (1925). J. biol. Chem. 64, 509.CrossRefGoogle Scholar
(8)Horst, M. F. Ter (1947). Ned. melk- en Zuiveltijdschr. 1, 137.Google Scholar
(9)Katz, S. & Klotz, I. M. (1953). Arch. Biochem. Biophys. 44, 351.CrossRefGoogle Scholar
(10)Kuyper, A. C. (1938). J. biol. Chem. 123, 405.CrossRefGoogle Scholar
(11)Lampett, L. H., Bushill, J. H. & Filmer, D. F. (1937). Biochem. J. 31, 1861.Google Scholar
(12)Ling, E. R. (1936). J. Dairy Res. 7, 145.CrossRefGoogle Scholar
(13)Ling, E. R. (1937). J. Dairy Res. 8, 173.CrossRefGoogle Scholar
(14)Pyne, G. T. (1934). Biochem. J. 28, 940.CrossRefGoogle Scholar
(15)Pyne, G. T. & Ryan, J. J. (1933). Sci. Proc. R. Dublin Soc. 20, 471.Google Scholar
(16)Pyne, G. T. & Ryan, J. J. (1950). J. Dairy Res. 17, 200.CrossRefGoogle Scholar
(17)Sandelin, A. E. (1947). Dairy Sci. Abstr. 9, 226.Google Scholar
(18)Seekles, L. & Smeets, W. Th. G. M. (1952). Nature, Lond., 169, 802.Google Scholar
(19)Van Slyke, L. L. & Bosworth, A. W. (1914). Tech. Bull. N.Y. St. agric. Exp. Sta. no. 37.Google Scholar
(20)Van Slyke, L. L. & Bosworth, A. W. (1915). J. biol. Chem. 20, 135.CrossRefGoogle Scholar
(21)Wendt, F. L. & Clark, A. H. (1923). J. Amer. Chem. Soc. 45, 881.CrossRefGoogle Scholar
(22)Whittier, E. O. (1929). J. biol. Chem. 73, 79.CrossRefGoogle Scholar
(23)Wiley, W. J. (1935). J. Dairy Res. 6, 72.Google Scholar