Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T13:14:08.893Z Has data issue: false hasContentIssue false

Acetaldehyde: an intermediate in the formation of ethanol from glucose by lactic acid bacteria

Published online by Cambridge University Press:  01 June 2009

G. J. Lees
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria 3052, Australia
G. R. Jago
Affiliation:
Dairy Research Laboratory, Division of Food Research, C.S.I.R.O., Highett, Victoria 3190, Australia

Summary

Group N streptococci formed acetaldehyde and ethanol from glucose. As the enzymes aldehyde dehydrogenase, phosphotransacetylase and acetate kinase were present this would enable these organisms to reduce acetyl-CoA to acetaldehyde and convert acetyl-CoA to acetyl phosphate and acetate. A pentose phosphate pathway which converted ribose-5-phosphate to glyceraldehyde-3-phosphate was also present. Acetaldehyde could not be formed via the hexose monophosphate shunt or by direct decarboxylation of pyruvate, as the enzymes phosphoketolase and α-carboxylase were absent. Phosphoketolase activity was induced in Streptococcus lactis subsp. diacetylactis after growth on D-xylose. Group N streptococci also contained an NAD-dependent alcohol dehydrogenase which reduced acetaldehyde to ethanol while both NAD- and NADP-dependent alcohol dehydrogenase activities were found in Leuconostoc cremoris.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badings, H. T. & Galesloot, Th. E. (1962). 16th International Dairy Congress, Copenhagen B, 199.Google Scholar
Bills, D. D. & Day, E. A. (1966). Journal of Dairy Science 49, 1473.CrossRefGoogle Scholar
Burbridge, T. N., Hine, C. H. & Schick, A. F. (1950). Journal of Laboratory and Clinical Medicine 35, 983.Google Scholar
Collins, E. B. & Bruhn, J. C. (1970). Journal of Bacteriology 103, 541.CrossRefGoogle Scholar
Dawes, E. A. & Foster, S. M. (1956). Biochimica et Biophysica Acta 22, 253.CrossRefGoogle Scholar
Dawes, E. A., Ribbons, D. W. & Large, P. J. (1966). Biochemical Journal 98, 795.CrossRefGoogle Scholar
De Man, J. C., Rogosa, M. & Sharpe, M. E. (1960). Journal of Applied Bacteriology 23, 130.CrossRefGoogle Scholar
French, C. S. & Milner, H. W. (1955). Methods in Enzymology 1, 64.CrossRefGoogle Scholar
Goldberg, M., Fessenden, J. M. & Racker, E. (1966). Methods in Enzymology 9, 515.CrossRefGoogle Scholar
Gunsalus, I. C. & Gibbs, M. (1952). Journal of Biological Chemistry 194, 871.CrossRefGoogle Scholar
Harvey, R. J. & Collins, E. B. (1961). Journal of Bacteriology 82, 954.CrossRefGoogle Scholar
Harvey, R. J. & Collins, E. B. (1963). Journal of Bacteriology 86, 1301.CrossRefGoogle Scholar
Hommes, F. A. (1966). Archives of Biochemistry and Biophysics 114, 231.CrossRefGoogle Scholar
Horecker, B. L. (1962). Methods in Enzymology 5, 261.CrossRefGoogle Scholar
Jakoby, W. B. (1957). Archives of Biochemistry and Biophysics 70, 625.CrossRefGoogle Scholar
Jakoby, W. B. (1958). Journal of Biological Chemistry 232, 75.CrossRefGoogle Scholar
Keenan, T. W. & Bills, D. D. (1968). Journal of Dairy Science 51, 1561.CrossRefGoogle Scholar
Keenan, T. W. & Lindsay, R. C. (1966). Journal of Dairy Science 49, 1563.CrossRefGoogle Scholar
Keenan, T. W., Lindsay, R. C., Morgan, M. E. & Day, E. A. (1966). Journal of Dairy Science 49, 10.CrossRefGoogle Scholar
Lindsay, R. C. & Day, E. A. (1965). Journal of Dairy Science 48, 665.CrossRefGoogle Scholar
Lindsay, R. C., Day, E. A. & Sandine, W. E. (1965). Journal of Dairy Science 48, 863.CrossRefGoogle Scholar
Lipmann, F. & Tuttle, L. C. (1945). Journal of Biological Chemistry 159, 21.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265.CrossRefGoogle Scholar
Nakae, T. & Elliott, J. A. (1965). Journal of Dairy Science 48, 293.CrossRefGoogle Scholar
Nandan, R. (1967). Dissertation Abstracts International B 28, 2052.Google Scholar
Rauschenbach, P. & Simon, H. (1968). Hoppe-Seyler's Zeitschrift für Physiologische Chemie 349, 1330.CrossRefGoogle Scholar
Reiter, B. & Møller-Madsen, A. (1963). Journal of Dairy Research 30, 419.CrossRefGoogle Scholar
Roach, M. K. & Creaven, P. J. (1968). Clinica Chimica Acta 21, 275.CrossRefGoogle Scholar
Rose, I. A. (1955). Methods in Enzymology 1, 591.CrossRefGoogle Scholar
Rudolph, F. B., Purich, D. L. & Fromm, H. J. (1968). Journal of Biological Chemistry 243, 5539.CrossRefGoogle Scholar
Saur, W. K., Crespi, H. L., Halevi, E. A. & Katz, J. J. (1968). Biochemistry 7, 3529.CrossRefGoogle Scholar
Speckman, R. A. & Collins, E. B. (1968). Journal of Bacteriology 95, 174.CrossRefGoogle Scholar
Stadtman, E. R. (1955). Methods in Enzymology 1, 596.CrossRefGoogle Scholar
Vakil, J. R. & Shahani, K. M. (1969). Canadian Journal of Microbiology 15, 753.CrossRefGoogle Scholar
Vakil, J. R. & Shahani., K. M. (1970). Antonie van Leeuwenhoek 36, 286.CrossRefGoogle Scholar