Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T09:00:41.988Z Has data issue: false hasContentIssue false

Activities of rumen micro-organisms in water buffalo (Bos bubalus L.) and in Zebu cattle

Published online by Cambridge University Press:  01 June 2009

M. A. Naga
Affiliation:
Department of Animal Production, Faculty of Agriculture, University of Alexandria, Egypt, U.A.R.
K. el-Shazly
Affiliation:
Department of Animal Production, Faculty of Agriculture, University of Alexandria, Egypt, U.A.R.

Summary

Two fistulated adult bulls of the Zebu breed and 2 fistulated adult buffalo steers were given a diet consisting of concentrate mixture (rice bran and cotton-seed cake in equal portions +2% calcium hydroxide + 1% common salt) and straw. This was later changed to an all-roughage diet of first cut berseem (Trifolium alexandrinum) Samples of the rumen contents were taken for determination of protozoal differential counts, concentration and relative proportions of volatile fatty acids (VFA), rate of cellulose digestion, fermentation rate, and net growth of rumen micro-organisms. Further data were obtained for the 2 buffalo steers fed sweet Sudan grass. When the feed consisted of concentrate and straw there were significant differences in the numbers of protozoa and in volatile fatty acid concentration in the 2 species of animals. Higher protozoal counts were observed in the rumen of bulls (7·2−8·1 × 105 organisms/ml) than in the rumen of buffaloes (2·6−3·6 × 105 organisms/ml). Greater concentration of VFA was found in the rumen of buffaloes (5·3−11·2 mequiv/100 ml rumen liquor) than in bulls (4·8−10·4 m-equiv/100 ml rumen liquor). With berseem, the concentration of VFA in the rumen was generally higher (6·73−11·0 m-equiv/100 ml rumen liquor) and the protozoal counts were lower (2·8−5·2 × 105 organisms/ml) but there were no significant differences between bulls and buffaloes.

The rates of cellulose digestion and the maximum fermentation rates were similar in the 2 species indicating a microbial population of the same order. Higher rates of cellulose digestion and of maximum fermentation when the ration consisted of berseem than when it consisted of concentrate + straw indicated a higher concentration of micro-organisms, mostly bacteria.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, I. A. & El-shazly, K. (1960). Alex. J. agric. Res. 8, 217.Google Scholar
Ahmed, I. A. & Tantawy, A. O. (1954). Alex. J. agric. Res. 2, 1.Google Scholar
Annison, E. F., Lewis, D. & Lindsay, D. B. (1959). J. agric. Sci., Comb. 53, 34.CrossRefGoogle Scholar
Ash, R. W. (1962). J. Physiol., Lond. 164, 25P.Google Scholar
Asker, A. A., Ghany, M. A. & Ragab, M. T. (1952). Indian J. Dairy Sci. 5, 171.Google Scholar
Asker, A. A., Ragab, M. T. & Kamal, T. H. (1957). Indian J. Dairy Sci. 10, 204.Google Scholar
Badawy, A. M., Campbell, M., Cuthbertson, D. P. & Mackie, W. S. (1958). Br. J. Nutr. 12, 384.CrossRefGoogle Scholar
Badr, M. F. (1954). Alex. J. agric. Res. 2, 12.Google Scholar
Badreldin, A. L., Oloufa, M. M. & Ghany, M. A. (1951). Nature, Lond. 167, 856.CrossRefGoogle Scholar
Bailey, C. B. (1961). Br. J. Nutr. 15, 443.CrossRefGoogle Scholar
Bailey, R. W. & Clarke, R. T. J. (1963). Nature, Lond. 198, 787.CrossRefGoogle Scholar
Balch, C. C. & Campling, R. C. (1965). In Physiology of Digestion in the Ruminant, Proc. 2nd Int. Symp. 1966, p. 108 (Eds. Dougherty, R. W. et al. ) Washington D.C.: Butterworths.Google Scholar
Balch, C. C. & Line, C. (1957). J. Dairy Res. 24, 11.CrossRefGoogle Scholar
Bath, D. L., Ronning, M., Lofgreen, G. P. & Meyer, J. H. (1966). J. Dairy Sci. 49, 830.CrossRefGoogle Scholar
Bhattacharyya, N. K. & Mullick, D. N. (1965). Indian J. exp. Biol. 3, 255.Google Scholar
Boyne, A. W., Eadie, J. M. & Raitt, K. (1957). J. gen. Microbiol. 17, 414.CrossRefGoogle Scholar
Burroughs, W., Gerlaugh, P. & Bethke, R. M. (1948). J. Anim. Sci. 7, 522.Google Scholar
Castle, E. J. (1956). Br. J. Nutr. 10, 15.CrossRefGoogle Scholar
Eadie, J. M. (1962). J. gen. Microbiol. 29, 563.CrossRefGoogle Scholar
Elsden, S. R. (1946). Biochem. J. 40, 252.CrossRefGoogle Scholar
Elsden, S. R., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (1946). J. exp. Biol. 22, 191.CrossRefGoogle Scholar
Gray, F. V., Pilgrim, A. F. & Weller, R. A. (1954). J. exp. Biol. 31, 49.CrossRefGoogle Scholar
Hogan, J. P. (1964). Aust. J. agric. Res. 15, 384.CrossRefGoogle Scholar
Hungate, R. E., Phillips, G. D., Mcgregor, A., Hungate, D. P. & Buechner, H. K. (1959). Science, N.Y. 130, 1192.CrossRefGoogle Scholar
Ichhponani, J. S., Makkar, G. S., Sidhu, G. S. & Moxon, A. L. (1962). J. Anim. Sci. 21, 1001.Google Scholar
Khoury, F. K., Ahmed, I. A. & El-shazly, K. (1967). J. Dairy Sci. 50, 1661.CrossRefGoogle Scholar
Mehtiev, M. A. & Akperov, K. M. (1963). Izv. akad. Nauk azerb. SSR (Ser. biol. med. Nauk), no. 5, p. 89.Google Scholar
Abstracted in Nutr. Abstr. Rev. (1964) 34, 774.Google Scholar
Moir, R. J. & Somers, M. (1956). Nature, Lond. 178, 1472.CrossRefGoogle Scholar
Morrison, F. B. (1956). Feeds and Feeding, 22nd edn.Ithaca, N.Y.: Morrison Publishing Corporation.Google Scholar
Oxford, A. E. (1955). J. Sci. Fd Agric. 6, 413.CrossRefGoogle Scholar
Phillipson, A. T. & Ash, R. W. (1965). In Physiology of Digestion in the Ruminant, Proc. 2nd Int. Symp. 1966, p. 97 (Eds. Dougherty, R. W., et al. ) Washington: Butterworths.Google Scholar
Purser, D. B. & Moir, R. J. (1959). Aust. J. agric. Res. 10, 555.CrossRefGoogle Scholar
Purser, D. B. & Moir, R. J. (1966). J. Anim. Sci. 25, 516.CrossRefGoogle Scholar
Putnam, P. A., Gutierrez, J. & Davis, R. E. (1961). J. Dairy Sci. 44, 1364.CrossRefGoogle Scholar
Ragab, M. T., Ghany, M. A. & Asker, A. A. (1953). Indian J. vet. Sci. 23, 205.Google Scholar
Sharma, G. K. (1936). Indian J. vet. Sci. 6, 266.Google Scholar
El-shazly, K., Abou akkada, A. R. & Naga, M. A. (1963). J. agric. Sci., Camb. 61, 109.CrossRefGoogle Scholar
El-shazly, K., Dehority, B. A. & Johnson, R. R. (1961). J. Anim. Sci. 20, 268.CrossRefGoogle Scholar
El-shazly, K. & Hungate, R. E. (1965). Appl. Microbiol. 13, 62.CrossRefGoogle Scholar
El-shazly, K., Khoury, F. K. & Ahmed, I. A. (1967). J. Dairy Sci. 50, 1667.CrossRefGoogle Scholar
Sperber, I., Hyden, S. & Ekman, J. (1953). K. Lantbr Högsk. Annlr 20, 337.Google Scholar
Van deb wath, J. G. & Myburgh, S. J. (1941). Onderstepoort J. vet. Sci. Anim. Ind. 17, 61.Google Scholar
Warner, A. C. I. (1956). J. gen. Microbiol. 14, 733.CrossRefGoogle Scholar
Warner, A. C. I. (1962). J. gen. Microbiol. 28, 129.CrossRefGoogle Scholar
Warner, R. G. & Flatt, W. P. (1965). In Physiology of Digestion in the Ruminant, Proc. 2nd Int. Symp. 1966, p. 24 (Eds. Dougherty, R. W. et al. ) Washington: Butterworths.Google Scholar
Whiteman, J. V., Loggins, P. F., Chambers, D., Pope, L. S. & Stephens, D. F. (1954). J. Anim. Sci. 13, 832.CrossRefGoogle Scholar