Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T14:15:51.179Z Has data issue: false hasContentIssue false

Heat stable proteinase from Pseudomonas fluorescens AH-70: purification by affinity chromatography on cyclopeptide antibiotics

Published online by Cambridge University Press:  01 June 2009

Juan I. Azcona
Affiliation:
Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
Rosario Martín
Affiliation:
Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
Miguel A. Asensio
Affiliation:
Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
Pablo E. Hernández
Affiliation:
Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
Bernabé Sanz
Affiliation:
Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain

Summary

A heat stable extracellular proteinase from the psychrotroph Pseudomonas fluorescens AH-70 was purified to electrophoretic homogeneity by affinity chromatography on a gramicidin S–Sepharose-4B column. Bacitracin linked to Sepharose-4B was unable to retain any proteolytic activity, whereas the same antibiotic bound to AH-Sepharose-4B retained ~ 25% of the total activity. The purification procedure on the gramicidin S–Sepharose-4B column was easy to perform, fast and reproducible; it resulted in a 207-fold increase in the specific activity and a yield of 41% of the original activity. The purified enzyme was a monomer with a mol. wt of 33000. The enzyme hydrolysed whole casein and its fractions whereas no activity was observed against bovine serum albumin. The enzyme was a metalloproteinase. It was heat stable, having D-values at 121, 135 and 150 °C of 3·8, 1·9 and 0·6 min respectively.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D. M., Barach, J. T. & Speck, M. L. 1976 Effect of psychrotrophic bacteria from raw milk on proteins and stability of milk proteins to ultrahigh temperature treatment. Journal of Dairy Science 59 823827CrossRefGoogle ScholarPubMed
Andrews, P. 1964 Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochemical Journal 91, 222233CrossRefGoogle ScholarPubMed
Barach, J. T., Adams, D. M. & Speck, M. L. 1976 Stabilization of a psychrotrophic Pseudomonas protease by calcium against thermal inactivation in milk at ultrahigh temperature. Applied and Environmental Microbiology 31 875879CrossRefGoogle ScholarPubMed
Cliffe, A. J. & Law, B. A. 1982 A new method for the detection of microbial proteolytic enzymes in milk. Journal of Dairy Research 49 209219CrossRefGoogle Scholar
Cousin, M. A. 1982 Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review. Journal of Food Protection 45 172207CrossRefGoogle ScholarPubMed
Cousin, M. A. & Marth, E. H. 1977 Changes in milk proteins caused by psychrotrophic bacteria. Milchwissenschaft 32 337341Google Scholar
DeBeukelar, N. J., Cousin, M. A., Bradley, R. L. & Marth, E. H. 1977 Modification of milk proteins by psychrotrophic bacteria. Journal of Dairy Science 60 857861CrossRefGoogle Scholar
Downey, W. K. 1980 Review of the progress of Dairy Science: Flavour impairment from pre- and postmanufacture lipolysis in milk and dairy products. Journal of Dairy Research 47 237252CrossRefGoogle Scholar
Ellis, B. R. & Marth, E. H. 1984 Growth of Pseudomonas or Flavobacterium in milk reduced yield of Cheddar cheese. Journal of Food Protection 47 713716CrossRefGoogle ScholarPubMed
Fairbairn, D. J. & Law, B. A. 1986 a Proteinases of psychrotrophic bacteria: their production, properties, effects and control. Journal of Dairy Research 53, 139177CrossRefGoogle ScholarPubMed
Fairbairn, D. J. & Law, B. A. 1986 b Purification and characterization of the extracellular proteinase of Pseudomonas fluorescens NCDO 2085. Journal of Dairy Research 53 457466CrossRefGoogle ScholarPubMed
Hendrie, M. S. & Shewan, J. M. 1979 The identification of Pseudomonads. In Identification Methods for Microbiologists, 2nd edn. pp. 114 (Eds Skinner, F. A. and Lovelock, D. W.) London: Academic Press (Society for Applied Bacteriology Technical Series No. 14)Google Scholar
Juan, S. M. & Cazzulo, J. J. 1976 The extracellular protease from Pseudomonas fluorescens. Experientia 32 11201122CrossRefGoogle ScholarPubMed
Kurotsu, T., Marahiel, M. A., Müller, K. D. & Kleinkauf, F. H. 1982 Characterization of an intracellular serine protease from sporulating cells of Bacillus brevis. Journal of Bacteriology 151 14661472CrossRefGoogle ScholarPubMed
Laemmli, U. K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680685CrossRefGoogle ScholarPubMed
Law, B. A. 1979 Reviews of the progress of Dairy Science: Enzymes of psychrotrophic bacteria and their effects on milk and milk products. Journal of Dairy Research 46 573588CrossRefGoogle Scholar
Law, B. A., Andrews, A. T. & Sharpe, M. E. 1977 Gelation of ultra-high-temperature-sterilized milk by proteases from a strain of Pseudomonas fluorescens isolated from raw milk. Journal of Dairy Research 44 145148CrossRefGoogle Scholar
Law, B. A., Cousins, C. M., Sharpe, M. E. & Davies, F. I., 1979 Psychrotrophs and their effects on milk and dairy products. In Cold Tolerant Microbes in Spoilage and the Environment, pp. 137152 (Eds Russell, A. D. and Fuller, R.) London: Academic Press (Society for Applied Bacteriology Technical Series No. 13)Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951 Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193 265275CrossRefGoogle ScholarPubMed
Mitchell, G. E., Ewings, K. N. & Bartley, J. P. 1986 Physicochemical properties of proteinases from selected psychrotrophic bacteria. Journal of Dairy Research 53 97115CrossRefGoogle ScholarPubMed
Patel, T. R., Jackman, D. M. & Bartlett, F. M. 1983 Heat-stable protease from Pseudomonas fluorescens T16: purification by affinity column chromatography and characterization. Applied and Environmental Microbiology 46 333337CrossRefGoogle ScholarPubMed
Richardson, B. C. 1981 The purification and characterization of a heat-stable protease from Pseudomonas fluorescens B52. New Zealand Journal of Dairy Science and Technology 16 195207Google Scholar
Stead, D. 1986 Microbial lipases: their characteristics, role in food spoilage and industrial uses. Journal of Dairy Research 53 481505CrossRefGoogle ScholarPubMed
Stepaniak, L. & Fox, P. F. 1983 Thermal stability of an extracellular proteinase from Pseudomonas fluorescens AFT 36. Journal of Dairy Research 50, 171184CrossRefGoogle ScholarPubMed
Stepaniak, L. & Fox, P. F. 1985 Isolation and characterization of heat stable proteinases from Pseudomonas isolate AFT 21. Journal of Dairy Research 52 7789CrossRefGoogle ScholarPubMed
Stepaniak, L., Fox, P. F. & Daly, C. 1982 Isolation and general characterization of a heat-stable proteinase from Pseudomonas fluorescens AFT 36. Biochimica et Biophysica Acta 717 376383CrossRefGoogle ScholarPubMed
Stepanov, V. M. & Rudenskaya, G. N. 1983 Proteinase affinity chromatography on bacitracin-Sepharose. Journal of Applied Biochemistry 5 420428Google ScholarPubMed
Swaisgood, H. E. 1982 Chemistry of milk protein. In Developments in Dairy Chemistry–1. Proteins, pp. 159 (Ed. Fox, P. F.) London: Applied Science PublishersGoogle Scholar
Voordouw, G. & Roche, R. S. 1974 The cooperative binding of two calcium ions to the double site of apothermolysin. Biochemistry 13 50175021CrossRefGoogle Scholar
White, C. H. & Marshall, R. T. 1973 Reduction of shelf-life of dairy products by a heat-stable protease from Pseudomonas fluorescens P26. Journal of Dairy Science 56 849853CrossRefGoogle Scholar
Wilchek, M. T., Miron, T. & Kohn, J. 1984 Affinity chromatography. Methods in Enzymology 104 335CrossRefGoogle ScholarPubMed
Wretlind, B. & Wadström, T. 1977 Purification and properties of a protease with elastase activity from Pseudomonas aeruginosa. Journal of General Microbiology 103 319327CrossRefGoogle ScholarPubMed
Yukioka, M., Saito, Y. & Otani, S. 1966 Enzymatic hydrolysis of gramicidin S. Journal of Biochemistry 60 295302CrossRefGoogle ScholarPubMed