Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T14:01:33.522Z Has data issue: false hasContentIssue false

Isolation and characterization of 3-deoxypentulose and its determination in heated milk

Published online by Cambridge University Press:  01 June 2009

Esperanza Troyano
Affiliation:
Instituto de Fermentaciones Industriales, Juan de la Cierva 3, E-28006 Madrid, España
Agustin Olano
Affiliation:
Instituto de Fermentaciones Industriales, Juan de la Cierva 3, E-28006 Madrid, España
Maria Luisa Jimeno
Affiliation:
Centro Nacional de Química Orgánica, Juan de la Cierva 3, E-28006 Madrid, España
Jesus Sanz
Affiliation:
lnstituto de Química Orgánica General (CSIC), Juan de la Cierva 3, E-28006 Madrid, España
Isabel Martínez-Castro
Affiliation:
lnstituto de Química Orgánica General (CSIC), Juan de la Cierva 3, E-28006 Madrid, España

Summary

The presence of 3-deoxypentulose in heated milk is reported. This compound has been isolated from alkaline solutions of lactose and characterized by spectroscopic and Chromatographie techniques. Gas Chromatographic analysis of free monosaccharides of milk revealed two peaks corresponding to 3-deoxypentulose in commercial sterilized milk samples, in a concentration range of 30–50 mg/1. Its concentration increased with temperature and length of time of processing.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adachi, S. 1958 Formation of lactulose and tagatose from lactose in strongly heated milk. Nature 181 840841CrossRefGoogle ScholarPubMed
Andrews, G. R. 1986 Review article. Formation and occurrence of lactulose in heated milk. Journal of Dairy Research 53 665680Google Scholar
Calvo, M. M. & Olano, A. 1989 Formation of galactose during heat treatment of milk and model systems. Journal of Dairy Research 56 737740CrossRefGoogle Scholar
Cockman, M., Kubler, D. G., Oswald, A. S. & Wilson, L. 1987 The mutarotation of fructose and the invertase hydrolysis of sucrose. Journal of Carbohydrate Chemistry 6 181201CrossRefGoogle Scholar
Dejongh, D. G., Radford, T., Hribar, J. D., Hanessian, S., Bieber, M., Dawson, G. & Sweeley, C. C. 1969 Analysis of tnmethylsilyl derivatives of carbohydrates by gas chromatography and mass spectroscopy. Journal of the American Chemical Society 91 17281740Google Scholar
Dizdaroglu, M. & Von Sonntag, C. 1973 [γ-Radiolysis of cellobiose in N2O saturated aqueous solution. Identification of the products.] Zeitschrift für Naturforschung R 28 635646Google Scholar
Garcia-Raso, A., Fernández-Díaz, M., Paez, M. I., Sanz, J. & Martínez-Castro, I. 1989 Gas Chromatographic retention of carbohydrate trimethylsilyl ethers. III. Ketohexoses. Journal of Chromatography 471 205216.CrossRefGoogle Scholar
Geier, H. & Klostermeyer, H. 1983 Formation of lactulose during heat treatment of milk. Milchwissenschaft 38 475477Google Scholar
Heyns, K., Stute, R. & Paulsen, H. 1966 [Browning reaction and fragmentation of carbohydrates. I. Volatile products from the thermal degradation of D-glucose.] Carbohydrate Research 2, 132149CrossRefGoogle Scholar
Hohno, H., Suyama, K. & Adachi, S. 1983 Formation of anhydro-sugars during thermal degradation of lactose. Journal of Dairy Science 66 1116CrossRefGoogle Scholar
Johansson, M. H. & Samuelson, O. 1978 Endwise degradation of hydrocellulose in bicarbonate solution. Journal of Applied Polymer Science 22 615623CrossRefGoogle Scholar
Lindström, L.-A. & Samuelson, O. 1977 Alkali and oxygen-alkali treatment of 4-deoxy-2,3-hexodiulose and 3-deoxy-erythro-pentose. Acta Chemica Scandinavica B 31 479484CrossRefGoogle Scholar
Löwendahl, L. & Samuelson, O. 1976 Degradation of cellobiose in hydroxide and hydrogen carbonate solution. Acta Chemica Scandinavica B 30 691694Google Scholar
Martínez-Castro, I. & Olano, A. 1980 Influence of thermal processing on carbohydrate composition of milk. Formation of epilactose. Milchwissenschaft 35 58Google Scholar
Olano, A., Calvo, M. M. & Corzo, N. 1989 Changes in the carbohydrate fraction of milk during heating processes. Food Chemistry 31 259265CrossRefGoogle Scholar
Radford, T. & Dejongh, D.C. 1972 Carbohydrates. In Biochemical Applications of Mass Spectrometry, pp. 313350 (Ed. Waller, G. R.). London: Wiley Interscience.Google Scholar
Siegenthaler, U. & Ritter, W. 1977 [A rapid TLC method for detection of mono- and disaccharides in milkshakes and yogurt.] Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene 68, 448450Google Scholar
Troyano, E., Olano, A., Fernández-Díaz, M., Sanz, J. & Martínez-Castro, I. 1991 Gas Chromatographie analysis of free monosaccharides in milk. Chromatographia 32 379382Google Scholar
Von Sonntag, C. & Dizdaroolu, M. 1977 The reactions of OH radicals with D-ribose in dcoxygenated and oxygenated aqueous solution. Carbohydrate Research 58 2130CrossRefGoogle Scholar
Vuorinen, T. 1985 2-C-carboxyaldoses and aldonic acids from cellobiose, maltose, and 4-O-methyl-D-glucose with 2-anthraquinonesulfonic acid. Carbohydrate Research 141 307317Google Scholar