Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T07:49:35.650Z Has data issue: false hasContentIssue false

Phosphorylation, glycosylation and amino acid sequence of component PP3 from the proteose peptone fraction of bovine milk

Published online by Cambridge University Press:  01 June 2009

Esben S. Sørensen
Affiliation:
Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, Denmark
Torben E. Petersen
Affiliation:
Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, Denmark

Summary

Component PP3 is a phosphorylated glycoprotein with an apparent molecular mass of 28 kDa isolated from the proteose peptone fraction of bovine milk. The function of the protein is not known. The primary structure has been determined and shown to contain 135 amino acid residues (EMBL accession no. P80195). It was phosphorylated at Ser29, Ser34, Ser38, Ser40 and Ser46. Two O-linked carbohydrate groups were found at Thr16 and Thr86, while one N-linked carbohydrate group was present at Asn77. Thr16 was only ∼ 50% glycosylated. The amino sugar detected by the amino acid analyser at Thr86 was mainly galactosamine but a small amount of glucosamine was also present. The amino sugars found in the carbohydrate group linked to Asn77 were both glucosamine and galactosamine. A fragment of PP3 has been isolated from milk and shown to correspond to residues 54–135. This fragment was probably generated by plasmin hydrolysing the Arg53–Ser54 bond.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkholt, V. & Jensen, A. L. 1989 Amino acid analysis: determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Analytical Biochemistry 177 318322CrossRefGoogle ScholarPubMed
Beg, O. U., Von Bahr-Lindström, H., Zaidi, Z. H. & Jörnvall, H. 1987 Characterization of a heterogeneous camel milk whey non-casein protein. FEBS Letters 216 270274CrossRefGoogle ScholarPubMed
Christensen, S. & Sottrup-Jensen, L. 1992 Bovine α2-antiplasmin: N-terminal and reactive site sequence. FEBS Letters 312 100104CrossRefGoogle Scholar
Fisher, L. W., Hawkins, G. R., Tuross, N. & Termine, J. D. 1987 Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. Journal of Biological Chemistry 262 97029708CrossRefGoogle ScholarPubMed
Franzén, A. & Heinegård, D. 1985 Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochemical Journal 232 715724CrossRefGoogle ScholarPubMed
Gorski, J. P. & Shimizu, K. 1988 Isolation of new phosphorylated glycoprotein from mineralized phase of bone that exhibits limited homology to adhesive protein osteopontin. Journal of Biological Chemistry 263 1593815945CrossRefGoogle ScholarPubMed
Hård, K., Van Zadelhoff, G., Moonen, P., Kamerling, J. P. & Vliegenthart, J. F. G. 1992 The Asn-linked carbohydrate chains of human Tamm-Horsfall glycoprotein: novel sulfated and novel N-acetylgalactosamine-containing N-linked carbohydrate chains. European Journal of Biochemistry 209 895915CrossRefGoogle ScholarPubMed
Kanno, C. 1989 a Purification and separation of multiple forms of lactophorin from bovine milk whey and their immunological and electrophoretic properties. Journal of Dairy Science 72 883891CrossRefGoogle ScholarPubMed
Kanno, C. 1989 b Characterization of multiple forms of lactophorin isolated from bovine milk whey. Journal of Dairy Science 72 17321739CrossRefGoogle ScholarPubMed
Kester, J. J. & Brunner, J. R. 1982 Milk fat-globule membrane as possible origin of proteose-peptone glycoproteins. Journal of Dairy Science 65 22412252CrossRefGoogle Scholar
Marshall, R. D. 1972 Glycoproteins. Annual Review of Biochemistry 41 673702CrossRefGoogle ScholarPubMed
Mercier, J. C. 1981 Phosphorylation of caseins. Present evidence for an amino acid triplet code post-translationally recognized by specific kinases. Biochimie 63 117CrossRefGoogle Scholar
Meyer, H. E., Hoffmann-Posorske, E., Korte, H. & Heilmeyer, L. M. G. 1986 Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivity. FEES Letters 204 6166CrossRefGoogle ScholarPubMed
Minaguchi, K., Madapallimattam, G. & Bennick, A. 1988 The presence and origin of phosphopeptides in human saliva. Biochemical Journal 250 171177CrossRefGoogle ScholarPubMed
Nejjar, Y., Pâquet, D., Godbillon, G. & Le Deaut, J. Y. 1986 Immunological relationship between the hydrophobic fraction of proteose-peptone and the milk fat globule membrane of bovine milk. International Journal of Biochemistry 18 893900CrossRefGoogle ScholarPubMed
Ng, W. C., Brunner, J. R. & Rhee, K. C. 1970 Proteose-peptone fraction of bovine milk: lacteum serum component 3—α whey glycoprotein. Journal of Dairy Science 53 987996CrossRefGoogle Scholar
Pâquet, D. 1989 [Review: the proteose peptone fraction of milk.] Lait 69 121CrossRefGoogle Scholar
Pâquet, D., Nejjar, Y. & Linden, G. 1988 Study of a hydrophobic protein fraction isolated from milk proteose-peptone. Journal of Dairy Science 71 14641471CrossRefGoogle Scholar
Prince, C. W., Oosawa, T., Butler, W. T., Tomana, M., Shown, A. S., Bhown, M. & Schrohenloher, R. E. 1987 Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. Journal of Biological Chemistry 262 29002907CrossRefGoogle ScholarPubMed
Raj, P. A., Johnsson, M., Levine, M. J. & Nancollas, G. H. 1992 Salivary statherin. Journal of Biological Chemistry 267 59685976CrossRefGoogle ScholarPubMed
Roach, P. J. 1991 Multisite and hierarchal protein phosphorylation. Journal of Biological Chemistry 266 1413914142CrossRefGoogle ScholarPubMed
Schachner, M. S., Miniter, P. M., Mayrer, A. R. & Andriole, V. T. 1987 Interaction of Tamm-Horsfall protein with bacterial extracts. Kidney International 31 7784CrossRefGoogle Scholar
Senger, D. R., Perruzzi, C. A., Papadopoulos, A. & Teñen, D. G. 1989 Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochimica et Biophysica Acta 996 4348CrossRefGoogle ScholarPubMed
Shiraga, H., Min, W., Van Dusen, W. J., Clayman, M. D., Miner, D., Terrell, C. H., Sherbotie, J. R., Foreman, J. W., Przysiecki, C., Neilson, E. G. & Hoyer, J. R. 1992 Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proceedings of the National Academy of Sciences of the USA 89 426430CrossRefGoogle ScholarPubMed
Sørensen, E. S. & Petersen, T. E. 1993 Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. Journal of Dairy Research 60 189197CrossRefGoogle ScholarPubMed
Veis, A. 1989 Biochemical studies of vertebrate tooth mineralization. In Biomineralization, pp. 189222 (Eds Mann, S., Webb, J. and Williams, R. J. P.). Weinheim: VCH VerlagsgesellschaftGoogle Scholar