Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T06:43:51.488Z Has data issue: false hasContentIssue false

Preparation and properties of αs-casein from buffalo's milk

Published online by Cambridge University Press:  01 June 2009

M. H. Abd El-Salam
Affiliation:
Laboratory of Food Technology and Dairying, National Research Centre, Cairo, Egypt

Summary

Buffalo αs-casein (α-sb) was found to be heterogeneous; on starch gelurea electrophoresis 4 electrophoretic components were detected.

The αsb-fraction was isolated by urea and alcohol fractionation. A preparation containing only the 2 main components was obtained by chromatography on DEAE-cellulose. Its amino acid pattern was different from that of cow αs1-casein. The fraction was also free of carbohydrate, cystine and cysteine.

Buffalo αsb-casein was less stable than cow αs-casein in solutions containing Ca, and the maximum stability of the αs-/κ-casein complex occurred at a lower Ca concentration.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abd El-Salam, M. H. & El-shibiny, S. (1972). Journal of Dairy Research 39, 219.CrossRefGoogle Scholar
Aschaffenburg, R. & Sen, A. (1963). Nature 197, 797.CrossRefGoogle Scholar
Aschaffenburg, R., Sen, A. & Thompson, M. P. (1968). Comparative Biochemistry and Physiology 27, 621.CrossRefGoogle Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Analytical Chemistry 28, 350.CrossRefGoogle Scholar
Goodwin, T. W. & Morton, R. A. (1946). Biochemical Journal 40, 628.CrossRefGoogle Scholar
Mercier, J. C., Grosclaude, F. & Ribadeau-dumas, B. (1971). European Journal of Biochemistry 23, 41.CrossRefGoogle Scholar
Nagasawa, T., Kiyosawa, I., Kuwahara, K. & Ganguli, N. C. (1973). Journal of Dairy Science 56, 61.CrossRefGoogle Scholar
Noble, R. W. Jr & Waugh, D. F. (1965). Journal of the American Chemical Society 87, 2236.CrossRefGoogle Scholar
Rose, D., Davies, D. T. & Yaguchi, M. (1969). Journal of Dairy Science 52, 8.CrossRefGoogle Scholar
Snell, F. D. & Snell, C. T. (1949). Colorimetric Methods of Analysis, 3rd edn, vol. 2. Princeton, N.J.: D. Van Nostrand Co.Google Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analytical Chemistry 30, 1190.CrossRefGoogle Scholar
Thompson, M. P., Gordon, W. G., Boswell, R. T. & Farrell, H. M. Jr (1969). Journal of Dairy Science 52, 1166.CrossRefGoogle Scholar
Wake, R. G. & Baldwin, R. L. (1961). Biochimica et Biophysica Acta 47, 225.CrossRefGoogle Scholar
Wallace, G. M. & Aiyar, K. R. (1969). Journal of Dairy Research 36, 115.CrossRefGoogle Scholar
Zittle, C. A., Cerbulis, J., Pepper, L. & Della Monica, E. S. (1959). Journal of Dairy Science 42, 1897.CrossRefGoogle Scholar
Zittle, C. A. & Custer, J. H. (1963). Journal of Dairy Science 46, 1183.CrossRefGoogle Scholar