Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T14:22:03.098Z Has data issue: false hasContentIssue false

Intrauterine growth restriction-induced deleterious adaptations in endothelial progenitor cells: possible mechanism to impair endothelial function

Published online by Cambridge University Press:  10 July 2017

V. Oliveira
Affiliation:
Nephrology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
L. V. de Souza
Affiliation:
Nephrology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
T. Fernandes
Affiliation:
School of Physical Education and Sport, Biochemistry and Molecular Biology Laboratory, University of São Paulo, São Paulo, Brazil
S. D. S. Junior
Affiliation:
Physiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
M. H. C. de Carvalho
Affiliation:
Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
E. H. Akamine
Affiliation:
Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
L. C. Michelini
Affiliation:
Physiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
E. M. de Oliveira
Affiliation:
School of Physical Education and Sport, Biochemistry and Molecular Biology Laboratory, University of São Paulo, São Paulo, Brazil
M. d. C. Franco*
Affiliation:
Nephrology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
*
*Address for correspondence: M. d. C. Franco, Division of Nephrology School of Medicine, Federal University of São Paulo, Rua Botucatu 703, SP 04023-062, Brazil (Email: maria.franco@unifesp.br)

Abstract

Intrauterine growth restriction (IUGR) can induce deleterious changes in the modulatory ability of the vascular endothelium, contributing to an increased risk of developing cardiovascular diseases in the long term. However, the mechanisms involved are not fully understood. Emerging evidence has suggested the potential role of endothelial progenitor cells (EPCs) in vascular health and repair. Therefore, we aimed to evaluate the effects of IUGR on vascular reactivity and EPCs derived from the peripheral blood (PB) and bone marrow (BM) in vitro. Pregnant Wistar rats were fed an ad libitum diet (control group) or 50% of the ad libitum diet (restricted group) throughout gestation. We determined vascular reactivity, nitric oxide (NO) concentration, and endothelial nitric oxide synthase (eNOS) protein expression by evaluating the thoracic aorta of adult male offspring from both groups (aged: 19–20 weeks). Moreover, the amount, functional capacity, and senescence of EPCs were assessed in vitro. Our results indicated that IUGR reduced vasodilation via acetylcholine in aorta rings, decreased NO levels, and increased eNOS phosphorylation at Thr495. The amount of EPCs was similar between both groups; however, IUGR decreased the functional capacity of EPCs from the PB and BM. Furthermore, the senescence process was accelerated in BM-derived EPCs from IUGR rats. In summary, our findings demonstrated the deleterious changes in EPCs from IUGR rats, such as reduced EPC function and accelerated senescence in vitro. These findings may contribute towards elucidating the possible mechanisms involved in endothelial dysfunction induced by fetal programming.

Type
Original Article
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Faienza, MF, Brunetti, G, Delvecchio, M, et al. Vascular function and myocardial performance indices in children born small for gestational age. Circ J. 2016; 4, 958963.CrossRefGoogle Scholar
2. Franco, MC, Higa, EM, D’Almeida, V, et al. Homocysteine and nitric oxide are related to blood pressure and vascular function in small-for-gestational-age children. Hypertension. 2007; 2, 396402.Google Scholar
3. Martin, H, Hu, J, Gennser, G, et al. Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birth weight. Circulation. 2000; 102, 27392744.Google Scholar
4. Herrera, EA, Cifuentes-Zuniga, F, Figueroa, E, et al. N-acetyl cysteine, a glutathione precursor, reverts vascular dysfunction and endothelial epigenetic programming in intrauterine growth restricted guinea pigs. J Physiol. 2016; 595, 10771092.Google Scholar
5. Holemans, K, Gerber, R, Meurrens, K, et al. Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr. 1999; 81, 7379.Google Scholar
6. Renshall, LJ, Dilworth, MR, Greenwood, SL, et al. In vitro assessment of mouse fetal abdominal aortic vascular function. Am J Physiol Regul Integr Comp Physiol. 2014; R746R754.Google Scholar
7. Torrens, C, Hanson, MA, Gluckman, PD, et al. Maternal undernutrition leads to endothelial dysfunction in adult male rat offspring independent of postnatal diet. Br J Nutr. 2009; 101, 2733.Google Scholar
8. Franco, M, Akamine, EH, Dimarco, GS, et al. NADPH oxidase and enhanced superoxide generation in the intrauterine undernourished rats: involvement of the renin-angiotensin system. Cardiovasc Res. 2003; 59, 767775.Google Scholar
9. Itani, N, Skeffington, KL, Beck, C, et al. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo. J Pineal Res. 2016; 60, 1626.Google Scholar
10. Tarry-Adkins, JL, Martin-Gronert, MS, Chen, JH, et al. Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J. 2008; 22, 20372044.Google Scholar
11. Khorram, O, Chuang, TD, Pearce, WJ. Long-term effects of maternal undernutrition on offspring carotid artery remodeling: role of miR-29c. J Dev Orig Health Dis. 2015; 4, 342349.Google Scholar
12. Kane, AD, Herrera, EA, Camm, EJ, et al. Vitamin C prevents intrauterine programming of in vivo cardiovascular dysfunction in the rat. Circ J. 2013; 77, 26042611.CrossRefGoogle ScholarPubMed
13. Oliveira, V, Akamine, EH, Carvalho, MHC, et al. Influence of aerobic training on the reduced vasoconstriction to angiotensin II in rats exposed to intrauterine growth restriction: possible role of oxidative stress and AT2 receptor of angiotensin II. PLoS One. 2014; 11, e113035.Google Scholar
14. Franco Mdo, C, Arruda, RM, Dantas, AP, et al. Intrauterine undernutrition: expression and activity of the endothelial nitric oxide synthase in male and female adult offspring. Cardiovasc Res. 2002; 56, 145153.CrossRefGoogle ScholarPubMed
15. Asahara, T, Murohara, T, Sullivan, A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275, 964967.Google Scholar
16. Shi, Q, Rafii, S, Wu, MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998; 92, 362367.CrossRefGoogle ScholarPubMed
17. Zhang, M, Malik, AB, Rehman, J. Endothelial progenitor cells and vascular repair. J Curr Opin Hematol. 2014; 3, 224228.Google Scholar
18. Van Zonneveld, AJ, Rabelink, TJ. Endothelial progenitor cells: biology and therapeutic potential in hypertension. Curr Opin Nephrol Hypertens. 2006; 15, 167172.Google Scholar
19. Urbich, C, Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004; 95, 343353.Google Scholar
20. Jansen, F, Yang, X, Hoelscher, M, et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013; 128, 20262038.CrossRefGoogle ScholarPubMed
21. Hill, JM, Zalos, G, Halcox, JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348, 593600.Google Scholar
22. Vasa, M, Fichtlscherer, S, Aicher, A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001; 89, E1E7.Google Scholar
23. Imanish, T, Kobayashi, K, Hano, T, et al. Effect of estrogen on differentiation and senescence in endothelial progenitor cells derived from bone marrow in spontaneously hypertensive rats. Hypert Res. 2005; 28, 763772.Google Scholar
24. Imanish, T, Moriwak, C, Hano, T, et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypert. 2005; 23, 18311837.Google Scholar
25. Schmidt-Lucke, C, Rössig, L, Fichtlscherer, S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005; 111, 29812987.Google Scholar
26. Oikonomou, E, Siasos, G, Zaromitidou, M, et al. Atorvastatin treatment improves endothelial function through endothelial progenitor cells mobilization in ischemic heart failure patients. Atherosclerosis. 2015; 2, 159164.Google Scholar
27. Ligi, I, Simoncini, S, Tellier, E, et al. A switch toward angiostatic gene expression impairs the angiogenic properties of endothelial progenitor cells in low birth weight preterm infants. Blood. 2011; 118, 16991709.Google Scholar
28. Miura, M, Numaguchi, Y, Ishii, M, et al. Differentiation capacity of endothelial progenitor cells correlates with endothelial function in healthy young men. Circ J. 2009; 73, 13241329.Google Scholar
29. Sibal, L, Aldibbiat, A, Agarwal, SC, et al. Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia. 2009; 52, 14641473.Google Scholar
30. Palombo, C, Kozakova, M, Morizzo, C, et al. Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovasc Diabetol. 2011; 10, 88.Google Scholar
31. Hampl, V, Walters, CL, Archer, SL. Determination of nitric oxide by the chemiluminescence reaction with ozone. In Methods in Nitric Oxide Research (eds. Feelisch M, Stamler JS), 1996; pp. 310318. John Wiley & Sons: Chichester.Google Scholar
32. Romero-Calvo, I, Ocón, B, Martínez-Moya, P, et al. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem. 2010; 401, 318320.CrossRefGoogle ScholarPubMed
33. Aldridge, GM, Podrebarac, DM, Greenough, WT, et al. The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods. 2008; 172, 250254.Google Scholar
34. Fernandes, T, Nakamuta, JS, Magalhães, FC, et al. Exercise training restores the endothelial progenitor cells number and function in hypertension: implications for angiogenesis. J Hypertens. 2012; 30, 21332143.CrossRefGoogle ScholarPubMed
35. Qian, J, Fulton, D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol. 2013; 4, 347.Google Scholar
36. Church, JE, Fulton, D. Differences in eNOS activity because of subcellular localization are dictated by phosphorylation state rather than the local calcium environment. J Biol Chem. 2006; 281, 14771488.Google Scholar
37. Michell, BJ, Chen, Z, Tiganis, T, et al. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001; 276, 1762517628.Google Scholar
38. Harris, MB, Ju, H, Venema, VJ, et al. Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation.. J Biol Chem. 2001; 276, 1658716591.Google Scholar
39. Fleming, I, Fisslthaler, B, Dimmeler, S, et al. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001; 88, E68E75.Google Scholar
40. Watts, VL, Motley, ED. Role of protease-activated receptor-1 in endothelial nitric oxide synthase-Thr495 phosphorylation. Exp Biol Med (Maywood). 2009; 234, 132139.Google Scholar
41. Sugden, MC, Langdown, ML. Possible involvement of PKC isoforms in signalling placental apoptosis in intrauterine growth retardation. Mol Cell Endocrinol. 2001; 185, 119126.Google Scholar
42. Li, P, Zhang, L, Zhang, M, et al. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: a mechanism for uric acid-induced endothelial dysfunction. Int J Mol Med. 2016; 37, 989997.Google Scholar
43. Werner, N, Koriol, S, Schiegl, T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005; 353, 9991007.CrossRefGoogle ScholarPubMed
44. Schmidt-Lucke, C, Rossig, L, Fichtlscherer, S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005; 111, 29812987.Google Scholar
45. Sun, Q, Dong, Y, Wang, HJ, et al. Anti-peroxynitrite treatment ameliorates vasorelaxation of resistance arteries in aging rats: involvement with protection of circulating endothelial progenitor cells. J Cardiovasc Pharmacol. 2016 [Epub ahead of print].Google Scholar
46. Dong, Y, Sun, Q, Liu, T, et al. Nitrative stress participates in endothelial progenitor cell injury in hyperhomocysteinemia. PLoS One. 2016; 11, e0158672.Google Scholar
47. Yu, H, Shao, H, Yan, J, et al. Bone marrow transplantation improves endothelial function in hypertensive Dahl salt-sensitive rats. J Am Soc Hypertens. 2012; 5, 331337.Google Scholar
48. Yoshida, Y, Fukuda, N, Maeshima, A, et al. Treatment with valsartan stimulates endothelial progenitor cells and renal label-retaining cells in hypertensive rats. J Hypertens. 2011; 29, 91101.Google Scholar
49. Imanishi, T, Tsujioka, H, Akasaka, T. Endothelial progenitor cells dysfunction and senescence: contribution to oxidative stress. Curr Cardiol Rev. 2008; 4, 275286.Google Scholar
50. Vassallo, PF, Simoncini, S, Ligi, I, et al. Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood. 2014; 13, 21162126.Google Scholar
51. Liu, B, Li, T, Peng, JJ, et al. Non-muscle myosin light chain promotes endothelial progenitor cells senescence and dysfunction in pulmonary hypertensive rats through up-regulation of NADPH oxidase. Eur J Pharmacol. 2016; 775, 6777.Google Scholar
52. Ben-Porath, I, Weinberg, RA. When cells get stressed: an integrative view of cellular senescence. J Clin Invest. 2004; 113, 813.Google Scholar
53. Wright, WE, Shay, JW. Histological claims and current interpretations of replicative aging.. Nat Biotechnol. 2002; 20, 682688.CrossRefGoogle Scholar
54. Sherr, CJ, De Pinho, RA. Cellular senescence: mitotic clock or culture shock? Cell. 2000; 102, 407410.Google Scholar
55. Sitte, N, Merker, K, Von Zglinicki, T, et al. Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I – effects of proliferative senescence. FASEB J. 2000; 15, 24952502.CrossRefGoogle Scholar
56. Robles, SJ, Adami, GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene. 1998; 16, 11131123.Google Scholar
57. Kaneko, T, Tahara, S, Taguchi, T, Kondo, H. Accumulation of oxidative DNA damage, 8-oxo-2'-deoxyguanoside, and change of repair systems during in vitro cellular aging of cultured human skin fibroblasts. Mutat Res. 2001; 487, 1930.Google Scholar
58. Chen, Q, Ames, BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA. 1994; 91, 41304134.Google Scholar
59. Kuki, S, Imanishi, T, Kobayashi, K, et al. Hyperglycemia accelerated endothelial progenitor cell senescence via an activation of p38 mitogen-activated protein kinase. Circ J. 2006; 70, 10761081.CrossRefGoogle ScholarPubMed
60. Seeger, FH, Haendeler, J, Walter, DH, et al. p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation. 2005; 111, 11841191.Google Scholar
Supplementary material: Image

Oliveira supplementary material

Oliveira supplementary material 1

Download Oliveira supplementary material(Image)
Image 477.4 KB
Supplementary material: File

Oliveira supplementary material

Oliveira supplementary material 2

Download Oliveira supplementary material(File)
File 857.3 KB