Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T16:10:49.010Z Has data issue: false hasContentIssue false

Area of scalar isosurfaces in homogeneous isotropic turbulence as a function of Reynolds and Schmidt numbers

Published online by Cambridge University Press:  26 November 2019

Kedar Prashant Shete*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA01003-9284, USA
Stephen M. de Bruyn Kops
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA01003-9284, USA
*
Email address for correspondence: kedar.kshete@gmail.com

Abstract

A fundamental effect of fluid turbulence is turbulent mixing, which results in the stretching and wrinkling of scalar isosurfaces. Thus, the area of isosurfaces is of interest in understanding turbulence in general, with specific applications in, for example, combustion and the identification of turbulent/non-turbulent interfaces. We report measurements of isosurface areas in 28 direct numerical simulations (DNS) of homogeneous isotropic turbulence with a mean scalar gradient resolved on up to $14\,256^{3}$ grid points with Taylor Reynolds number $Re_{\unicode[STIX]{x1D706}}$ ranging from 24 to 633 and Schmidt number $Sc$ ranging from 0.1 to 7. More precisely, we measure layers with very small but finite thickness. The continuous equation we evaluate converges exactly to the area in the limit of zero layer thickness. We demonstrate a method for numerically integrating this equation that, for a test case with an analytical solution, converges linearly towards the exact solution with decreasing layer width. By applying the technique to DNS data and testing for convergence with resolution of the simulations, we verify the resolution requirements for DNS recently proposed by Yeung et al. (Phys. Rev. Fluids, vol. 3 (6), 2018, 064603). We conclude that isosurface areas scale with the square root of the Taylor Péclet number $Pe_{\unicode[STIX]{x1D706}}$ between approximately 50 and 4429, with some departure from power-law scaling evident for $2.4<Pe_{\unicode[STIX]{x1D706}}<50$. No independent effect of either $Re_{\unicode[STIX]{x1D706}}$ or $Sc$ is observed. The excellent scaling of area with $Pe_{\unicode[STIX]{x1D706}}^{1/2}$ occurs even though the probability density function of the scalar gradient is very close to exponential for $Re_{\unicode[STIX]{x1D706}}=98$ but approximately lognormal when $Re_{\unicode[STIX]{x1D706}}=633$.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almalkie, S. & de Bruyn Kops, S. M. 2012a Energy dissipation rate surrogates in incompressible Navier–Stokes turbulence. J. Fluid Mech. 697, 204236.CrossRefGoogle Scholar
Almalkie, S. & de Bruyn Kops, S. M. 2012b Kinetic energy dynamics in forced, homogeneous, and axisymmetric stably stratified turbulence. J. Turbul. 13 (29), 129.Google Scholar
Antonia, R. A. & Sreenivasan, K. R. 1977 Lognormality of temperature dissipation in a turbulent boundary layer. Phys. Fluids 20 (11), 18001804.CrossRefGoogle Scholar
Bohr, M. 2007 A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE Solid-State Circuits Society Newsletter 12 (1), 1113.CrossRefGoogle Scholar
Bray, K. 2016 Laminar flamelets in turbulent combustion modeling. Combust. Sci. Technol. 188 (9), 13721375.CrossRefGoogle Scholar
Bray, K. N. & Swaminathan, N. 2006 Scalar dissipation and flame surface density in premixed turbulent combustion. C. R. Méc. 334 (8–9), 466473.CrossRefGoogle Scholar
de Bruyn Kops, S. M. 2015 Classical turbulence scaling and intermittency in stably stratified Boussinesq turbulence. J. Fluid Mech. 775, 436463.CrossRefGoogle Scholar
de Bruyn Kops, S. M. & Riley, J. J. 1998a Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids 10 (9), 21252127.CrossRefGoogle Scholar
de Bruyn Kops, S. M. & Riley, J. J. 1998b Scalar transport characteristics of the linear-eddy model. Combust. Flame 112 (1/2), 253260.CrossRefGoogle Scholar
de Bruyn Kops, S. M. & Riley, J. J. 2001 Mixing models for large-eddy simulation of non-premixed turbulent combustion. J. Fluids Engng 123 (2), 341346.CrossRefGoogle Scholar
de Bruyn Kops, S. M. & Riley, J. J. 2019 The effects of stable stratification on the decay of initially isotropic homogeneous turbulence. J. Fluid Mech. 860, 787821.CrossRefGoogle Scholar
Catrakis, H. J., Aguirre, R. C. & Ruiz-Plancarte, J. 2002 Area-volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence. J. Fluid Mech. 462, 245254.CrossRefGoogle Scholar
Chaudhuri, S., Kolla, H., Dave, H. L., Hawkes, E. R., Chen, J. H. & Law, C. K. 2017 Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet. Combust. Flame 184, 273285.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A. L. 1955 Free-stream boundaries of turbulent flows. NACA Rep. 1224, 10331064.Google Scholar
Delichatsios, M. A. 1987 Air entrainment into buoyant jet flames and pool fires. Combust. Flame 70 (1), 3346.CrossRefGoogle Scholar
Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. 1974 Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9 (5), 256268.CrossRefGoogle Scholar
Dimov, I. T., Penzov, A. A. & Stoilova, S. S. 2007 Parallel Monte Carlo approach for integration of the rendering equation. In Numerical Methods and Applications (ed. Boyanov, T., Dimova, S., Georgiev, K. & Nikolov, G.), pp. 140147. Springer.CrossRefGoogle Scholar
Donzis, D. A., Yeung, P. K. & Sreenivasan, K. R. 2008 Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20 (4), 045108.CrossRefGoogle Scholar
Dopazo, C., Martin, J., Cifuentes, L. & Hierro, J. 2018 Strain, rotation and curvature of non-material propagating iso-scalar surfaces in homogeneous turbulence. Flow Turbul. Combust. 101 (1), 132.CrossRefGoogle Scholar
Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506520.CrossRefGoogle Scholar
Federer, H. 1959 Curvature measures. Trans. Amer. Math. Soc. 93 (3), 418491.CrossRefGoogle Scholar
Freedman, D. & Diaconis, P. 1981 On the histogram as a density estimator: l2 theory. Z. Wahrscheinlichkeit. 57 (4), 453476.CrossRefGoogle Scholar
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007a Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J. Fluid Mech. 589, 83102.CrossRefGoogle Scholar
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007b Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives. J. Fluid Mech. 589, 103123.CrossRefGoogle Scholar
Hill, R. J. 1978 Models of the scalar spectrum for turbulent advection. J. Fluid Mech. 88 (3), 541562.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.CrossRefGoogle Scholar
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007 Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335366.CrossRefGoogle Scholar
Ishihara, T., Morishita, K., Yokokawa, M., Uno, A. & Kaneda, Y. 2016 Energy spectrum in high-resolution direct numerical simulations of turbulence. Phys. Rev. Fluids 1, 082403.CrossRefGoogle Scholar
Kahan, W. 1965 Pracniques: further remarks on reducing truncation errors. Commun. ACM 8 (1), 4048.CrossRefGoogle Scholar
Kim, S. Y. & Bilger, R. W. 2007 Iso-surface mass flow density and its implications for turbulent mixing and combustion. J. Fluid Mech. 590, 381409.CrossRefGoogle Scholar
Kolla, H. & Chen, J. H. 2018 Turbulent Combustion Simulations with High-Performance Computing. pp. 7397. Springer.Google Scholar
Lewiner, T., Lopes, H., Vieira, A. W. & Tavares, G. 2003 Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8 (2), 115.CrossRefGoogle Scholar
Liu, Y. S., Yi, J., Zhang, H., Zheng, G. Q. & Paul, J. C. 2010 Surface area estimation of digitized 3D objects using quasi-Monte Carlo methods. Pattern Recognition 43, 39003909.CrossRefGoogle Scholar
Muschinski, A. & de Bruyn Kops, S. M. 2015 Investigation of Hill’s optical turbulence model by means of direct numerical simulation. J. Opt. Soc. Am. A 32 (12), 24232430.CrossRefGoogle ScholarPubMed
Newman, T. S. & Yi, H. 2006 A survey of the marching cubes algorithm. Comput. Graph. 30 (5), 854879.CrossRefGoogle Scholar
O’Neill, P. L. & Soria, J. 2005 The topology of homogeneous isotropic turbulence with passive scalar transport. In Proceedings of 12th Computational Techniques and Applications Conference, CTAC-2004 (ed. May, R. & Roberts, A. J.), Anziam J., vol. 46, pp. C1170C1187. Australian Mathematical Society.Google Scholar
Overholt, M. R. & Pope, S. B. 1998 A deterministic forcing scheme for direct numerical simulations of turbulence. Comput. Fluids 27, 1128.CrossRefGoogle Scholar
Patera, J. & Skala, V. 2004 A comparison of fundamental methods for iso surface extraction. Machine Graphics and Vision 13 (4), 329343.Google Scholar
Payne, J. L. & Hassan, B.1988 Massively Parallel Computational Fluid Dynamics Calculations for Aerodynamics and Aerothermodynamics Applications.Google Scholar
Peters, N. 2000 Turbulent Combustion Cambridge University Press.CrossRefGoogle Scholar
Pope, S. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445469.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pope, S. B., Yeung, P. K. & Girimaji, S. S. 1989 The curvature of material surfaces in isotropic turbulence. Phys. Fluids A 1 (12), 20102018.CrossRefGoogle Scholar
Portwood, G. D., de Bruyn Kops, S. M., Taylor, J. R., Salehipour, H. & Caulfield, C. P. 2016 Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech. 807, R2 (14 pages).CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007 Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press.Google Scholar
Raase, S. & Nordström, T. 2015 On the use of a many-core processor for computational fluid dynamics simulations. Procedia Comput. Sci. 51, 14031412.CrossRefGoogle Scholar
Rao, K. J. & de Bruyn Kops, S. M. 2011 A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow. Phys. Fluids 23, 065110.CrossRefGoogle Scholar
Resnikoff, H. L. & Raymond, O. Jr 2012 Wavelet Analysis: The Scalable Structure of Information. Springer Science & Business Media.Google Scholar
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11 (1), 2132.CrossRefGoogle Scholar
Scheidegger, C. E., Schreiner, J. M., Duffy, B., Carr, H. & Silva, C. T. 2008 Revisiting histograms and isosurface statistics. IEEE Trans. Vis. Comput. Gr. 14 (6), 16591666.CrossRefGoogle ScholarPubMed
Schroeder, W., Martin, K., Lorensen, B., Avila, L. S., Avila, R. & Law, C. C. 2006 The Visualization Toolkit An Object-Oriented Approach To 3D Graphics, 4th edn. Kitware.Google Scholar
Schumacher, J. & Sreenivasan, K. R. 2005 Statistics and geometry of passive scalars in turbulence. Phys. Fluids 17, 125107.CrossRefGoogle Scholar
Schumacher, J., Sreenivasan, K. R. & Yakhot, V. 2007 Asymptotic exponents from low-Reynolds-number flows. New J. Phys. 9, 89.CrossRefGoogle Scholar
Shete, K. P.2019 Calculation of isosurface areas and applications. Master’s thesis, University of Massachusetts Amherst, Amherst, MA.Google Scholar
Sobol’, I. M. 1967 On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7 (4), 784802.Google Scholar
Sreenivasan, K. R. & Kailasnath, P. 1996 The passive scalar spectrum and the Obukhov–Corrsin constant. Phys. Fluids 8, 189196.CrossRefGoogle Scholar
Swaminathan, N. & Bray, K. 2011 Turbulent Premixed Flames. Cambridge University Press.CrossRefGoogle Scholar
Taveira, R. R. & da Silva, C. B. 2014 Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids 26 (2), 021702.Google Scholar
Vadhan, S. P. et al. 2012 Pseudorandomness. Foundations and Trends in Theoretical Computer Science 7 (1–3), 1336.CrossRefGoogle Scholar
Vedula, P., Yeung, P. K. & Fox, R. O. 2001 Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 2960.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6 (40), 136.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2007 Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence. J. Fluid Mech. 590, 117146.CrossRefGoogle Scholar
Watanabe, T., Riley, J. J., de Bruyn Kops, S. M., Diamessis, P. J. & Zhou, Q. 2016 Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid Mech. 797, R1.CrossRefGoogle Scholar
Yakhot, V. & Sreenivasan, K. R. 2005 Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys. 121, 823841.CrossRefGoogle Scholar
Yeung, P., Sreenivasan, K. & Pope, S. 2018 Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence. Phys. Rev. Fluids 3 (6), 064603.CrossRefGoogle Scholar
Yeung, P. K., Donzis, D. A. & Sreenivasan, K. R. 2005 High-Reynolds-number simulation of turbulent mixing. Phys. Fluids 17, 081703.CrossRefGoogle Scholar
Yeung, P. K. & Sawford, B. L. 2002 Random-sweeping hypothesis for passive scalars in isotropic turbulence. J. Fluid Mech. 459, 129138.CrossRefGoogle Scholar
Yurtoglu, M., Carton, M. & Storti, D. 2018 Treat all integrals as volume integrals: a unified, parallel, grid-based method for evaluation of volume, surface, and path integrals on implicitly defined domains. J. Inf. Sci. Engng 18 (2), 021013.Google ScholarPubMed
Zheng, T., You, J. & Yang, Y. 2017 Principal curvatures and area ratio of propagating surfaces in isotropic turbulence. Phys. Rev. Fluids 2, 103201.CrossRefGoogle Scholar